Synthesis mesomorphic and theoretical studies of some new unsymmetrical dimeric ethers of 6-amino-1,3-dimethyluracil and biphenyl cores

AbdulKarim-Talaq Mohammad, H.T. Srinivasa, Hameed Madlool Mohammed, S. Hariprasad, Guan-Yeow Yeap

PII: S0022-2860(16)30247-2
DOI: 10.1016/j.molstruc.2016.03.052
Reference: MOLSTR 22363

To appear in: Journal of Molecular Structure

Received Date: 21 November 2015
Revised Date: 12 March 2016
Accepted Date: 15 March 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Uracil Liquid Crystals

Where \(n = 6 \) and \(8 \). \(R = C_6H_{13}, C_8H_{17}, C_{10}H_{21}, C_{12}H_{25}, C_{14}H_{29}, C_{16}H_{33}, C_{18}H_{37} \)

![Smectic phase](image1.jpg) ![Nematic phase](image2.jpg)
Synthesis mesomorphic and theoretical studies of some new unsymmetrical dimeric ethers of 6-amino-1,3-dimethyluracil and biphenyl cores

AbdulKarim-Talaq Mohammad¹, Srinivasa, H. T², Hameed Madlool Mohammed³, Hariprasad, S⁴, Guan-Yeow Yeap⁵

¹Chemistry Department, College of Science, University of Anbar, Ramadi, Iraq
²Raman Research Institute, Soft Condensed Matter Group, Sadashivanagara, Bengaluru-560080, Karnataka, India
³Chemistry Department, College of Science for Women, University of Baghdad, Baghdad, Iraq
⁴Department of Chemistry, Central College Campus, Bangalore University, Bengaluru-560001, Karnataka, India
⁵Liquid Crystal Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia

Abstract

New sets of unsymmetric calamitic molecules with uracil unit at one end and biphenyl core at another end were synthesized. Liquid crystal property of these molecules was investigated by POM and DSC techniques. All compounds exhibit LC property depending on the spacer and terminal alkoxy chain of the molecules. First set shows smectic phase in lower members and nematic phase appeared in higher members. The second set favour nematic liquid crystalline phase with respect to spacer alkyl chain length. Molecules are escaped from the planarity as a result disturbing the layer stacking leads to nematic phase in higher analogues. Theoretical studies have been performed for all the compounds and are found to be in agreement with the results of the current studies.

Keyword: liquid crystals, dimers, mesophases, heterocycles, uracil, theoretical studies

*Author for correspondence: *AbdulKarim-Talaq Mohammad, Tel; +9647902529959
E-mail address: drmohamadtalaq@gmail.com.
1. Introduction

It has been well documented that the liquid crystalline behaviour of an organic compound is dependent on its molecular architecture in which a slight change in its molecular geometry gives rise to a considerable change in its mesomorphic properties [1-6]. Liquid crystalline materials possess many applications in scientific and technological areas, in particular as display devices, organic light emitting diodes (OLEDs), anisotropic networks, photoconductors and semiconductor materials [7-9]. Dimer is one, in the classification of liquid crystals in which two rigid mesogenic units are joined by a flexible spacer [9]. The phase transition behaviour of dimer depends on the chain length especially the parity of the connecting spacer [11, 12]. Recently, research based on dimers has received considerable attention owing to the fact that the dimers could behave as model compounds for the understanding of the technologically important semi-flexible main chain liquid crystal polymers and as model compounds for side group liquid crystal polymers [13-15]. On the other hand, studies on mesogenic structures containing heterocyclic rings have increased remarkably, owing to their abilities to exhibit mesogenic behavior either similar to or superior to the linear phenyl analogs [16-21]. Further, the presence of heteroatoms (O, S and N) has lead to significant changes in the corresponding liquid crystalline phases and/or in the physical properties of the observed phases because the heteroatoms are more polarizable than carbon. Therefore, a large dipole may eventually be introduced into a liquid crystal structure in comparison with the analogous phenyl-based mesogens [22-24]. With respect to the nucleic acid bases, the cholesteric mesophase has been observed only in adenine and thymine with cholesterol moiety [25, 26].

Due to our interest, we are continuing our investigations on preparation and characterization of heterocycle-based thermotropic liquid crystals. Moreover, recently, we have reported mesogenic compounds possessing a biphenyl ester moiety with a 6-amino-1,3-dimethyluracil unit [27]. Here, we wish to access two more homologous series of compounds synthesis, characterization and evaluation for their liquid crystals properties belong to unsymmetric dimer series of 5-(4-(5-(4′-(alkyloxy)biphenyl-4-yloxy)alkyloxy)benzylideneamino)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione containing 6-amino-1,3-dimethyluracil at one end and with alkoxyphenyl terminal at the other end possessing chains of varying central methylene spacer lengths (n = 6 and 8).
The physical properties of the title compounds were studied by Fourier-Transform Infra-Red (FT-IR) Spectroscopy and high resolution nuclear magnetic resonance (NMR) techniques. The phase transition temperatures and enthalpy values of the title compounds were measured by differential scanning calorimetry (DSC) and the textures of the mesophases were studied using polarizing optical microscope (POM).

2. Results and discussion

2.1 Synthesis and characterization

The synthetic route for the target compounds 4a-4n is shown in Scheme 1. Spectroscopic methods such as FT-IR and NMR (1H and 13C) were employed to elucidate the structures of compounds 4a-n. Molecular structure characterizations were in good agreement with software predictions. Compounds 4a-g having methylene spacer length n = 6 and terminal alkyl chain varies from n = 6-18, whereas compounds 4h-n has methylene spacer length n = 8 with varying terminal alkyl chain from n = 6-18.

Insert Scheme 1 is about here

FT-IR spectra of compounds 4a-n exhibit absorption bands that can be assigned to the stretching of aliphatic C-H within the frequency range 2995-2868 cm\(^{-1}\). The C=O stretch frequency appears between the range of 1777-1760 cm\(^{-1}\). The band which appears at the frequency 1628-1618 cm\(^{-1}\) is attributed to the stretching of C=N. The ether group of spacer chain and terminal chain gave rise to strong absorptions at 1255-1250 cm\(^{-1}\). The FT-IR spectroscopic study was further supported by the application of 1H NMR and 13C NMR in an effort to elucidate the molecular structures. The NMR spectra obtained indicate that all members of the homologous series exhibit similar trend in 1H-1H splitting and chemical shifts. The NMR resonances with respect to the diagnostic peaks are discussed based on the representative compound 4a (with -C$_6$H$_{12}$- methylene spacer and -C$_6$H$_{13}$ terminal chain). 1H NMR assignment of compound 4a has been carried out with aid of two dimensional 1H-1H COSY experiment. A singlet at 6.83 ppm is attributed to the vinyl proton of the hetero uracil ring. The presence of the azomethine protons (-CH=N-) appears as singlet at 8.84 ppm. The absorption of 12 aromatic protons from two
different distinguishable positions at the aromatic rings gave rise to a multiplet between 6.87-8.60 ppm. Another three triplets were detected at 4.17 ppm, 4.05 ppm and 3.91 ppm were assigned to the ethoxy protons adjacent to the methylene protons in spacer chain and terminal alkoxy chain respectively. Two singlets at 3.42 ppm and 3.12 ppm were assigned to methyl groups attached to nitrogen atom in 6-amino-1,3-dimethyluracil ring. A triplet was observed at the high-field of 0.81 ppm, which can be assigned to the methyl protons of the terminal hexyl group in compound 4a.

insert Table 1 is about here

2.2 Phase transitions and mesomorphic behaviours

Phase transition temperatures and optical textures were analysed by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). The transition temperatures (°C) and respective enthalpies (kJ mol⁻¹) obtained from the DSC thermograms are given in Table 1. All the synthesized molecules 4a-n tended to exhibit enantiotropic liquid crystal properties. The solid samples were sandwiched between untreated glass plate and a cover slip and subjected to heating followed by cooling scans at the rate of 5 °C/min for textural observations through POM. In the first set of compounds 4a-g, SmA phase was observed in compounds 4a-d, whereas compounds 4e-g shows nematic phase. The representative DSC scans of 4c as shown in Fig 1. For example compound 4c show transitions at 143.30 °C (22.08) and 160.31 °C (1.23) on heating scan which corresponds to Cr-to-SmA-to-Iso phase sequence. In the cooling scan reverse transitions were observed at 141 °C (-23.22) and 154 °C (-1.78) which corresponds to Iso-to-SmA-to-Cr state. Compound 4c displayed sandy texture having small focal conics as depicted in Fig 2 (a) and focal conic texture for 4d as shown in Fig 2 (b). Compounds 4e-g shows enantiotropic nematic phase. The difference in the mesophase behavior of 4a-d and 4e-g molecules can be explained by the number of aliphatic chains present at the periphery and at spacer position of the molecules. In this regard, a smaller aliphatic chain seems to be a co-ordinating in terms of achieving a good packing and may leads to SmA mesophase. In case of 4e-g the peripheral, spacer alkyl chains and bulky of 6-amino-1,3-dimethyluracil moiety may not allow molecules to pack each other as a result nematic phase is existed.

Insert Figure 1 is about here
Notably, in the second set of compounds 4h-n, only 4h shows SmA phase, whereas other members showing enantiotropic nematic phase. The representative DSC scans of compound 4i shown in Fig 1. On heating the sample 4i melts to a nematic mesophase with Schlieren texture at 138.89 °C and then it went to isotropic liquid state at 161.23 °C. In a similar way, in cooling scan nematic mesophase re-appeared at 155.90 °C and then crystallised at 133.12 °C. The textures observed on heating scan from crystal can be observed in Figure 2 (c) for 4l and (d) for 4n. The SmA phase is observed in 4h compound and nematic phase was observed in the compounds of 4i-n, this could be the result of a lower degree of planarity from the terminal bulky 6-amino-1,3-dimethyluracil group. This lack of planarity prevents molecular packing and end up with less ordered nematic mesophase in higher members.

However, both the set of compounds 4a-g (spacer n = 6) and 4h-n (spacer n = 8) shows completely irrelevant results with respect to spacer, for this kind of unexpected results we reason that, it is known that the pronounced odd even effect is relevant to a spacer in dimers and this trend is not followed by present case, because only two spacers (n = 6 and 8) were studied and also both are even members. Usually in dimers, lower members favour the nematic phase and higher members favour the smectic phase with add-even effects [34]. The present results are fully contraries than expected. The effects of the spacer length on the transition temperatures and phase behaviour observed in this series are not in accord with those observed for conventional low molar mass mesogens or dimers. The same effect is observed in present series of compounds with increasing carbon atoms in both the terminal and spacer alkyl chain. The results are found here are unusual when compare to the normal behaviour of the dimers [35].

Further, all the compounds which are showing nematic to isotropic transitions are associated with higher enthalpy values than the associated enthalpies of SmA to Isotropic transitions. This factor is completely depend on the orientation order of the molecules, means high orientation order is existed between the molecules in the
nematic phase, as a result molecules requires high enthalpy to transform another phase, same fact has been observed in this case. Moreover, this is presumably due to the rather bulky shape of the 6-amino-1,3-dimethyluracil group and this increased molecular biaxiality has been used to account for relatively high clearing entropies. Thus, the orientational order is enhanced and a higher enthalpy values for nematic to isotropic transitions would be expected [36,37]

A plot of transition temperature as a function of alkyl chain length at periphery as well as in the spacer for the sets of 4a-g and 4h-n is shown in Fig 3(a) and (b). The clearing temperature for both sets of compounds shows a tendency of ascending curve along with increasing in the number of carbons at periphery and spacer chain throughout the set of compounds. The first set 4a-h compounds have little lower transition temperature than the second set 4h-n of compounds. A comparison of mesomorphic behaviour of these unsymmetrical sets of compounds reveals that crystal-to-mesophase average range is about 16 °C for the set 4a-g, whereas in 4h-n set of compounds average crystal-to-mesophase range was increased to 19 °C. The study proves that the increase of spacer and terminal chain length favour stabilization of the mesophases.

Insert Figure 3 is about here

2.3 Theoretical studies

Theoretical studies have been carried out by Hyper Chem program to get a better understanding of the relationship between the structure and type of phases. Theoretical models of compounds 4a, 4g, 4h and 4h are depicted in Figure 4 in which the length of spacer alkoxy chain varied from n = 6 and 8, respectively. Theoretically calculated data and experimental results are in agreement to the title compounds.

Insert Figure 4 is about here

As shown in Figure 4, 1,3-dimethyluracil ring and biphenyl ring which is adjacent to the spacer appeared at different positions which depended on the number of carbons at the alkoxy spacer [31-33]. The models indicated that 1,3-dimethyluracil and biphenyl core groups take different opposite terminal ends according to number of carbons at spacer change from n = 6 and 8. Non-planar geometry of 1,3-
dimethyluracil and biphenyl rings was observed in compound 4a and this geometry tends to exhibit Smectic A. However, a more planar geometry of 1,3-dimethyluracil and biphenyl was found in compounds 4f molecular conformation favoured arrangement of a nematic phase. Likewise, same phenomena have been observed in compounds type 4h-n when a carbon spacer n = 8, compounds 4h (Figure 4) show also non-planar geometry of 1,3-dimethyluracil and biphenyl rings, while compounds 4n shown more planarity comparison with compound 4h. Also we can revels from figure 4 the terminal alkyl chain play well to effected the planarity of 1,3-dimethyluracil and biphenyl rings

Finally, the study reveals that the variation of terminal alkyl chain and spacer chain length plays an important role in the type of phase occurred in both set of compounds.

3. Conclusions

In this article, the synthesis, mesomorphic and theoretical models of some novel dimeric liquid crystalline compounds have been studied. All title compounds exhibited liquid crystal properties. Smectic A was observed with short spacer groups, while nematic phase appears with longer spacer groups. Theoretical models presented for few compounds are in good agreement with our results.

Acknowledgement

AK-T M extends heartfelt thanks to Professor John West and the Liquid Crystal Institute at the Kent State University, for performing theoretical studies and hospitality. The authors would also like to thank the University of Anbar and Universiti Sains Malaysia for supporting this project.

4. Experimental

4.1. Materials

Bromoalkanes, α,ω-dibromoalkanes, 4-hydroxybenzaldehyde, 6-amino-1,3-dimethyluracil, 4,4′-dihydroxybiphenyl were obtained from Aldrich. The fine chemicals and required solvents were used directly from the bottles without further purification. Thin-layer chromatography (TLC) was performed on pre-coated silica-gel on aluminium plates.
4.2 Measurement

The FT-IR spectra of the intermediates and title compounds were analyzed in the form of KBr pellets and the spectra were recorded in the range of 4000-400 cm\(^{-1}\) using a Perkin Elmer 2000 FT-IR spectrophotometer. The elemental microanalyses (CHN) were performed using a Perkin Elmer 2400 LS Series CHNS/O analyzer. The \(^1\)H and \(^{13}\)C NMR spectra were recorded in dimethylsulphoxide (DMSO-\(d_6\)) at 298 K on a Bruker 400 MHz Ultrashield™ FT-NMR spectrometer equipped with a 5 mm BBI inverse gradient probe. Chemical shift values (\(\delta\)) were referenced to internal standard tetramethylsilane (TMS). The concentration of solute molecules was 40 mg in 1.0 ml DMSO. Standard Bruker pulse programs [28] were used throughout the entire experiment. Texture observation was carried out using Carl Zeiss Axioskop 40 optical microscope equipped with Linkam LTS350 hot stage and TMS94 temperature controller. The transition temperatures and associated enthalpy values were determined using a differential scanning calorimeter (Elmer Pyris 1 DSC) operated at a scanning rate of ± 5 °C min\(^{-1}\) on heating and cooling, respectively.

Theoretical models were obtained using Hyper Chem 8.0.8 (Hypercube Inc.) in the Liquid Crystal Institute of Kent State University, USA. Data set of the compounds was entered as two-dimensional sketches into Hyper Chem program.

4.3 Synthesis

The synthetic routes of the intermediates 1a-b, 2a-g, 3a-n and title compounds 4a-n are shown in Scheme 1. The Williamson’s etherification method used for the preparation of compounds 1a-b, 2a-g and 3a-n. Compounds 1a-b were synthesised via reaction between equimolar amounts of 1,6-dibromohexane or 1,8-dibromooctane with 4-hydroxybenzaldehyde in DMF in present of K\(_2\)CO\(_3\) at 145 °C for 4 hr `[29, 30]`. Compounds 2a-g were synthesised by the reaction between 4,4'-dihydroxybiphenyl with a series of alkylbromides ranging from 6 to 18 carbons. The final compounds 3a-n was obtained by the reaction between 1a-b and 2a-g.

4.3.1 General synthetic procedure for 4a-n

4.3.2. 5-\{6-(4'-Alkylxy)biphenyl-4-yloxy)alkyloxy)benzylideneamino\}-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4a-4n)
The target compounds were synthesised according to method described by Majumdar et al [27, 30]. A mixture of compound 6-amino-1,3-dimethyluracil (128 mg, 0.827 mmol) and 4-(6-(4’-(hexyloxy)biphenyl-4-yloxy)hexyloxy)benzaldehyde 3a (500 mg, 0.827 mmol) was refluxed in absolute ethanol in the presence of a catalytic amount of glacial acetic acid for 2 h. The Schiff base 4a was obtained as a precipitate from the hot reaction mixture. Further, to get pure compound it was repeatedly washed with hot ethanol and dried in vacuum.

The analytical data of FT-IR, 1H and 13C NMR for title compounds are summarized as follows:

5-(6-(4’-(Hexyloxy)biphenyl]-4-yloxy)hexyloxy)benzylidene)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4a). Yield 73 %; Anal: found for C$_{37}$H$_{45}$N$_3$O$_5$ (%): C, 72.83; H, 7.24; N, 6.99. Calc. C, 72.64; H, 7.41; N, 6.87. IR: v_{max}(KBr, cm$^{-1}$): 2995, 2883, 1770 - 1620, 1580, 1251. 1HNMR δ (ppm, DMSO): 8.84 (s, 1H, -CH=N-), 6.87-8.60 (m, 12H, Ar-H), 6.83 (s, 1H), 4.17 (t, 2H, J = 6.89 Hz, -OCH$_2$-), 4.05 (t, 2H, J = 6.67 Hz), 3.91 (t, 2H, J = 6.14 Hz), 3.42 (s, 3H), 3.12 (s, 3H), 1.89-1.71 (m, 16H), 0.81 (t, 3H, -CH$_3$). 13C NMR δ: 176.04, 169.70, 162.00 (C=O), 161.20 (C=N), 160.94, 158.23 (Ar-C-O), 115.12-141.04 (Ar-C), 62.67 (C-O-C), 21.20 (CH$_2$), 15.11 (CH$_3$) ppm.

5-(6-(4’-(Octyloxy)biphenyl]-4-yloxy)hexyloxy)benzylidene)amino)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4b). Yield 78 %; Anal: found for C$_{39}$H$_{49}$N$_3$O$_5$ (%): C, 73.08; H, 7.60; N, 6.43. Calc. C, 73.21; H, 7.72; N, 6.57. IR: v_{max}(KBr, cm$^{-1}$): 2989, 2871, 1766 1618, 1573, 1250. 1HNMR δ (ppm, DMSO): 8.76 (s, 1H, -CH=N-), 6.86-8.58 (m, 12H, Ar-H), 6.80 (s, 1H), 4.17 (t, 2H, J = 6.88 Hz, -OCH$_2$-), 4.05 (t, 2H, J = 6.67 Hz), 3.91 (t, 2H, J = 6.14 Hz), 3.42 (s, 3H), 3.12 (s, 3H), 1.89-1.74 (m, 20H), 0.85 (t, 3H, -CH$_3$). 13C NMR δ: 175.30, 168.11, 162.89 (C=O), 161.59 (C=N), 161.08, 159.44 (Ar-C-O), 114.77-140.39 (Ar-C), 62.07 (C-O-C), 21.20 (CH$_2$), 14.56 (CH$_3$) ppm.

5-(6-(4’-(Decyloxy)-biphenyl]-4-yloxy)hexyloxy)benzylidene)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4c). Yield 69 %; Anal: found for C$_{41}$H$_{53}$N$_3$O$_5$ (%): C, 73.89; H, 8.11; N, 6.14. Calc. C, 73.73; H, 8.00; N, 6.29. IR: v_{max}(KBr, cm$^{-1}$): 2992, 2880, 1772 1628, 1587, 1255. 1HNMR δ (ppm, DMSO): 8.82 (s, 1H, -CH=N-), 6.92-8.63 (m, 12H, Ar-H), 6.87 (s, 1H), 4.17 (t, 2H, J = 6.39 Hz), 4.07 (t, 2H, J = 6.39 Hz), 4.01 (t, 2H, J = 6.67 Hz), 3.91 (t, 2H, J = 6.14 Hz), 3.42 (s, 3H), 3.12 (s, 3H), 1.89-1.74 (m, 20H), 0.85 (t, 3H, -CH$_3$). 13C NMR δ: 175.30, 168.11, 162.89 (C=O), 161.59 (C=N), 161.08, 159.44 (Ar-C-O), 114.77-140.39 (Ar-C), 62.07 (C-O-C), 21.20 (CH$_2$), 14.56 (CH$_3$) ppm.
6.67 Hz, -OCH\(_2\)). 3.93 (t, 2H, \(J = 6.09\) Hz), 3.49 (s, 3H), 3.15 (s, 3H), 1.87-1.73 (m, 24H), 0.88 (t, 3H, -CH\(_3\)). \(^{13}\)C NMR \(\delta\): 174.95, 168.78, 162.50 (C=O), 161.06 (C=N), 161.86, 160.17 (Ar-C-O), 114.90-140.07 (Ar-C), 62.30 (C-O-C), 22.30 (CH\(_2\)), 14.60 (CH\(_3\)) ppm.

5-(6-(4’-(Dodecyloxy)-biphenyl]-4-yloxy)hexyloxy)benzylidene)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4d). Yield 75 \%; Anal: found for C\(_{43}\)H\(_{57}\)N\(_3\)O\(_5\) (%): C, 74.40; H, 8.49; N, 6.27. Calc. C, 74.21; H, 8.26; N, 6.04. IR: \(\nu_{\text{max}}\) (KBr, cm\(^{-1}\)): 2990, 2884, 1775 1622, 1583, 1253. \(^1\)HNMR \(\delta\) (ppm, DMSO): 8.80 (s, 1H, -CH=N-), 6.95-8.65 (m, 12H, Ar-H), 6.88 (s, 1H), 4.18 (t, 2H, \(J = 6.28\) Hz), 4.05 (t, 2H, \(J = 6.89\) Hz, -OCH\(_2\)), 3.96 (t, 2H, \(J = 6.19\) Hz), 3.45 (s, 3H), 3.18 (s, 3H), 1.86-1.76 (m, 28H), 0.89 (t, 3H, -CH\(_3\)). \(^{13}\)C NMR \(\delta\): 175.11, 167.20, 162.93 (C=O), 160.75 (C=N), 159.23, 158.30 (Ar-C-O), 114.06-140.69 (Ar-C), 61.07 (C-O-C), 21.44 (CH\(_2\)), 15.05 (CH\(_3\)) ppm.

5-(6-(4’-(Tetradecyloxy)-biphenyl]-4-yloxy)hexyloxy)benzylidene)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4e). Yield 81 \%; Anal: found for C\(_{45}\)H\(_{61}\)N\(_3\)O\(_5\) (%): C, 74.80; H, 8.31; N, 5.64. Calc. C, 74.65; H, 8.49; N, 5.80. IR: \(\nu_{\text{max}}\) (KBr, cm\(^{-1}\)): 2992, 2882, 1777 1625, 1589, 1251. \(^1\)HNMR \(\delta\) (ppm, DMSO): 8.65 (s, 1H, -CH=N-), 6.95-8.51 (m, 12H, Ar-H), 6.86 (s, 1H), 4.19 (t, 2H, \(J = 6.70\) Hz), 4.08 (t, 2H, \(J = 6.47\) Hz, -OCH\(_2\)), 3.94 (t, 2H, \(J = 6.49\) Hz), 3.49 (s, 3H), 3.14 (s, 3H), 1.87-1.70 (m, 32H), 0.92 (t, 3H, -CH\(_3\)). \(^{13}\)C NMR \(\delta\): 174.88, 167.84, 164.02 (C=O), 162.20 (C=N), 159.22, 158.90 (Ar-C-O), 114.00-140.27 (Ar-C), 62.04 (C-O-C), 22.15 (CH\(_2\)), 15.38 (CH\(_3\)) ppm.

5-(6-(4’-(Hexadecyloxy)-biphenyl]-4-yloxy)hexyloxy)benzylidene)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4f). Yield 76 \%; Anal: found for C\(_{47}\)H\(_{65}\)N\(_3\)O\(_5\) (%): C, 75.20; H, 8.55; N, 5.71. Calc. C, 75.06; H, 8.71; N, 5.59. IR: \(\nu_{\text{max}}\) (KBr, cm\(^{-1}\)): 2986, 2872, 1774 1628, 1584, 1255. \(^1\)HNMR \(\delta\) (ppm, DMSO): 8.72 (s, 1H, -CH=N-), 6.85-8.40 (m, 12H, Ar-H), 6.80 (s, 1H), 4.12 (t, 2H, \(J = 6.09\) Hz, -OCH\(_2\)), 4.01 (t, 2H, \(J = 6.60\) Hz), 3.92 (t, 2H, \(J = 6.70\) Hz), 3.47 (s, 3H), 3.12 (s, 3H), 1.88-1.76 (m, 36H), 0.81 (t, 3H, -CH\(_3\)). \(^{13}\)C NMR \(\delta\): 176.02, 168.00, 164.96 (C=O), 161.83 (C=N), 160.80, 159.30 (Ar-C-O), 115.20-140.98 (Ar-C), 61.60 (C-O-C), 22.83 (CH\(_2\)), 14.36 (CH\(_3\)) ppm.
5-(6-(4’-(Octadecyloxy)-biphenyl]-4-ylloxy)hexyloxy)benzylidene)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4g). Yield 70 %; Anal: found for C_{49}H_{69}N_{3}O_{5} (%): C, 75.60; H, 8.76; N, 5.50. Calc. C, 75.44; H, 8.92; N, 5.39. IR: ν_{\max}(KBr, cm$^{-1}$): 2983, 2868, 1770, 1625, 1580, 1254. 1HNMR δ (ppm, DMSO): 8.76 (s, 1H, -CH=N-), 7.93-8.46 (m, 12H, Ar-H), 6.83 (s, 1H), 4.18 (t, 2H, $J = 6.84$ Hz), 4.06 (t, 2H, $J = 6.75$ Hz), 3.95 (t, 2H, $J = 6.19$ Hz, -OCH$_2$-), 3.48 (s, 3H), 3.11 (s, 3H), 1.89-1.77 (m, 40H), 0.80 (t, 3H, -CH$_3$). 13C NMR δ: 175.69, 166.49, 164.03 (C=O), 160.10 (C=N), 160.21, 159.11 (Ar-C-O), 115.00-140.31 (Ar-C), 62.09 (C-O-C), 14.07 (CH$_3$) ppm.

5-(8-(4’-(Hexyloxy)-[biphenyl]-4-ylloxy)octyloxy)benzylidene)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4h). Yield 66 %; Anal: found for C_{39}H_{49}N_{3}O_{5} (%): C, 73.45; H, 7.80; N, 6.39. Calc. C, 73.21; H, 7.72; N, 6.57. IR: ν_{\max}(KBr, cm$^{-1}$): 2980, 2871, 1769, 1622, 1583, 1250. 1HNMR δ (ppm, DMSO): 8.74 (s, 1H, -CH=N-), 6.90-8.51 (m, 12H, Ar-H), 6.85 (s, 1H), 4.19 (t, 2H, $J = 6.93$ Hz), 4.08 (t, 2H, $J = 6.41$ Hz, -OCH$_2$-), 3.93 (t, 2H, $J = 6.63$ Hz), 3.44 (s, 3H), 3.18 (s, 3H), 1.87-1.71 (m, 20H), 0.85 (t, 3H, -CH$_3$). 13C NMR δ: 174.09, 165.20, 163.20 (C=O), 162.60 (C=N), 161.57, 160.29 (Ar-C-O), 114.69-141.14 (Ar-C), 62.09 (C-O-C), 21.30 (CH$_2$), 15.21 (CH$_3$) ppm.

5-(8-(4’-(Octyloxy)-[biphenyl]-4-ylloxy)octyloxy)benzylidene)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4i). Yield 67 %; Anal: found for C_{41}H_{53}N_{3}O_{5} (%): C, 73.88; H, 8.25; N, 6.40. Calc. C, 73.73; H, 8.00; N, 6.29. IR: ν_{\max}(KBr, cm$^{-1}$): 2993, 2882, 1772, 1620, 1584, 1253. 1HNMR δ (ppm, DMSO): 8.72 (s, 1H, -CH=N-), 6.86-8.58 (m, 12H, Ar-H), 6.80 (s, 1H), 4.15 (t, 2H, $J = 6.76$ Hz, -OCH$_2$-), 4.02 (t, 2H, $J = 6.90$ Hz), 3.98 (t, 2H, $J = 6.12$ Hz), 3.48 (s, 3H), 3.20 (s, 3H), 1.89-1.73 (m, 24H), 0.87 (t, 3H, -CH$_3$). 13C NMR δ: 175.50, 164.58, 162.99 (C=O), 162.00 (C=N), 160.46, 159.33 (Ar-C-O), 114.19-140.29 (Ar-C), 62.00 (C-O-C), 22.58 (CH$_2$), 15.44 (CH$_3$) ppm.

5-(8-(4’-(Decyloxy)-[biphenyl]-4-ylloxy)octyloxy)benzylidene)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4j). Yield 73 %; Anal: found for C_{43}H_{57}N_{3}O_{5} (%): C, 74.30; H, 8.08; N, 6.20. Calc. C, 74.21; H, 8.26; N, 6.04. IR: ν_{\max}(KBr, cm$^{-1}$):
5-(8-(4’-(Dodecyloxy)-[biphenyl]-4-yloxy)octyloxy)benzylidene)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4k). Yield 70%; Anal: found for C_{45}H_{61}N_{3}O_{5} (%) C, 74.51; H, 8.60; N, 5.66. Calc. C, 74.65; H, 8.49; N, 5.80. IR: ν_{max}(KBr, cm$^{-1}$): 2990, 1760, 1618, 1589, 1254. 1HNMR δ (ppm, DMSO): 8.68 (s, 1H, -CH=N-), 6.92-8.53 (m, 12H, Ar-H), 6.86 (s, 1H), 4.18 (t, 2H, $J = 6.00$ Hz, -OCH$_2$-), 4.06 (t, 2H, $J = 6.20$ Hz), 3.94 (t, 2H, $J = 6.44$ Hz), 3.40 (s, 3H), 3.29 (s, 3H), 1.88-1.70 (m, 28H), 0.79 (t, 3H, -CH$_3$). 13C NMR δ: 176.10, 166.90, 164.20 (C=O), 163.50 (C=N), 162.50, 160.90 (Ar-C-O), 62.61 (C-O-C), 21.95 (CH$_2$), 15.83 (CH$_3$) ppm.

5-(8-(4’-(Tetradecyloxy)-[biphenyl]-4-yloxy)octyloxy)benzylidene)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4l). Yield 65%; Anal: found for C$_{47}$H$_{65}$N$_{3}$O$_{5}$ (%) C, 75.30; H, 8.92; N, 5.73. Calc. C, 75.06; H, 8.71; N, 5.59. IR: ν_{max}(KBr, cm$^{-1}$): 2987, 1769, 1623, 1580, 1251. 1HNMR δ (ppm, DMSO): 8.68 (s, 1H, -CH=N-), 6.93-8.50 (m, 12H, Ar-H), 6.84 (s, 1H), 4.12 (t, 2H, $J = 6.77$ Hz, -OCH$_2$-), 4.00 (t, 2H, $J = 6.30$ Hz), 3.89 (t, 2H, $J = 6.62$ Hz), 3.45 (s, 3H), 3.22 (s, 3H), 1.89-1.71 (m, 32H), 0.89 (t, 3H, -CH$_3$). 13C NMR δ: 176.30, 165.78, 163.20 (C=O), 160.94 (C=N), 161.23, 159.03 (Ar-C-O), 114.21-140.48 (Ar-C), 61.20 (C-O-C), 22.07 (CH$_2$), 14.40 (CH$_3$) ppm.

5-(8-(4’-(Hexadecyloxy)-[biphenyl]-4-yloxy)octyloxy)benzylidene)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4m). Yield 69%; Anal: found for C$_{49}$H$_{69}$N$_{3}$O$_{5}$ (%) C, 75.52; H, 8.82; N, 5.48. Calc. C, 75.44; H, 8.92; N, 5.39. IR: ν_{max}(KBr, cm$^{-1}$): 2980, 1768, 1625, 1582, 1250. 1HNMR δ (ppm, DMSO): 8.70 (s, 1H, -CH=N-), 6.98-8.50 (m, 12H, Ar-H), 6.86 (s, 1H), 4.18 (t, 2H, $J = 6.10$ Hz, -OCH$_2$-), 4.06 (t, 2H, $J = 6.42$ Hz), 3.92 (t, 2H, $J = 6.79$ Hz), 3.42 (s, 3H), 3.21 (s, 3H), 1.88-1.70 (m, 40H), 0.88 (t, 3H, -CH$_3$). 13C NMR δ: 174.30, 165.60, 163.11 (C=O), 160.00 (C=N),
160.19, 159.67 (Ar-C-O), 114.07-140.29 (Ar-C), 61.30 (C-O-C), 22.80 (CH$_2$), 14.69 (CH$_3$) ppm.

5-(8-(4’-(Octadecyloxy)-[biphenyl]-4-yloxy)octyloxy)benzylidene)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (4n). Yield 77%; Anal: found for C$_{51}$H$_{73}$N$_3$O$_5$ (%): C, 75.64; H, 9.28; N, 5.08. Calc. C, 75.80; H, 9.10; N, 5.20. IR: ν_{max}(KBr, cm$^{-1}$): 2985, 2873, 1770 1622, 1580, 1254. 1HNMR δ (ppm, DMSO): 8.73 (s, 1H, -CH=N-), 6.93-8.56 (m, 12H, Ar-H), 6.88 (s, 1H), 4.19 (t, 2H, $J = 6.99$ Hz, -OCH$_2$-), 4.04 (t, 2H, $J = 6.79$ Hz), 3.96 (t, 2H, $J = 6.11$ Hz), 3.48 (s, 3H), 3.24 (s, 3H), 1.89-1.72 (m, 44H), 0.90 (t, 3H, -CH$_3$). 13C NMR δ: 175.00, 165.88, 162.09 (C=O), 160.60 (C=N), 160.71, 159.14 (Ar-C-O), 114.49-140.67 (Ar-C), 62.09 (C-O-C), 21.20 (CH$_2$), 14.27 (CH$_3$) ppm.
References

[28] Bruker program 1D WIN-NMR (release 6.0) and 2D WIN-NMR (release 6.1).
Table 1. The heating/cooling phase transition temperatures (°C) and the associated enthalpies (kJ mol\(^{-1}\)) for target compounds 4a-n.

<table>
<thead>
<tr>
<th>Compound</th>
<th>n</th>
<th>R</th>
<th>Heating /Cooling scans</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>6</td>
<td>C(6)H({13})</td>
<td>Cr 112.2 (22.84) SmA 130.1 (4.20) Iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr 98.5 (-19.32) SmA 118.7 (-2.11) Iso</td>
</tr>
<tr>
<td>4b</td>
<td>6</td>
<td>C(6)H({17})</td>
<td>Cr 119.6 (25.10) SmA 136.3 (3.80) Iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr 111.4 (-21.45) SmA 126.2 (-6.78) Iso</td>
</tr>
<tr>
<td>4c</td>
<td>6</td>
<td>C({10})H({21})</td>
<td>Cr 143.3 (22.08) SmA 160.3 (1.23) Iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr 141 (-23.22) SmA 154 (-1.78) Iso</td>
</tr>
<tr>
<td>4d</td>
<td>6</td>
<td>C({12})H({25})</td>
<td>Cr 159.2 (27.08) SmA 176.5 (2.44) Iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr 154.4 (-18.56) SmA 170.9 (3.30) Iso</td>
</tr>
<tr>
<td>4e</td>
<td>6</td>
<td>C({14})H({29})</td>
<td>Cr 171.1 (15.60) N 190.5 (4.67) Iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr 167.8 (-21.45) N 183 (-5.44) Iso</td>
</tr>
<tr>
<td>4f</td>
<td>6</td>
<td>C({16})H({33})</td>
<td>Cr 185.1 (29.18) N 202.3 (5.98) Iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr 178.8 (-27.06) N 195.8 (-6.04) Iso</td>
</tr>
<tr>
<td>4g</td>
<td>6</td>
<td>C({18})H({37})</td>
<td>Cr 197.7 (21.55) N 211.8 (7.89) Iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr 189.9 (-18.90) N 204.7 (-8.78) Iso</td>
</tr>
<tr>
<td>4h</td>
<td>8</td>
<td>C(6)H({13})</td>
<td>Cr 116.2 (25.76) SmA 130.2 (8.35) Iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr 104.7 (-23.54) SmA 121.1 (-3.45) Iso</td>
</tr>
<tr>
<td>4i</td>
<td>8</td>
<td>C(6)H({17})</td>
<td>Cr 138.9 (24.90) N 161.2 (2.09) Iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr 133.1 (-17.67) N 155.9 (-1.30) Iso</td>
</tr>
<tr>
<td>4j</td>
<td>8</td>
<td>C({10})H({21})</td>
<td>Cr 148.2 (19.00) N 173.1 (2.98) Iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr 142.1 (-26.40) N 167.5 (-2.49) Iso</td>
</tr>
<tr>
<td>4k</td>
<td>8</td>
<td>C({12})H({25})</td>
<td>Cr 173 (25.06) N 190.1 (3.50) Iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr 166.9 (-19.17) N 182 (-3.88) Iso</td>
</tr>
<tr>
<td>4l</td>
<td>8</td>
<td>C({14})H({29})</td>
<td>Cr 188.2 (19.34) N 206.2 (5.66) Iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr 181.2 (-25.00) N 198.4 (-4.79) Iso</td>
</tr>
<tr>
<td>4m</td>
<td>8</td>
<td>C({16})H({33})</td>
<td>Cr 194.1 (17.70) N 215.6 (7.82) Iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr 187.2 (-20.60) N 208.6 (-6.49) Iso</td>
</tr>
<tr>
<td>4n</td>
<td>8</td>
<td>C({18})H({37})</td>
<td>Cr 210 (18.33) N 232.1 (9.08) Iso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr 205.8 (-18.0) N 226 (-7.20) Iso</td>
</tr>
</tbody>
</table>

Cr = Crystal; SmA = Smectic A phase; N = Nematic phase; Iso = Isotropic phase
Fig 1. DSC scans of 4c and 4i on heating and cooling cycles.
Fig 2. (a) (colour online) Optical photomicrographs of compound 4c exhibiting SmA mesophase upon heating at 150 °C (b) 4d upon heating displaying SmA at 165 °C (c) 4l displaying nematic phase upon heating at 194 °C (d) 4n exhibiting nematic texture upon heating at 228 °C.
Fig 3. (colour online) Plot of cooling scan transition temperature as a function of the number of carbon atoms in the terminal chain for the sets (a) 4a-g and (b) 4h-n.

HyperChem of 4a
HyperChem of 4f
HyperChem of 4h
HyperChem of 4n

Fig 4. (colour online) Theoretical molecular models of compound 4a, 4f, 4h, and 4n using HyperChem program
Scheme 1. Synthetic route for 4a-n
Highlights

- New sets of unsymmetric calamitic molecules with uracil and biphenyl core were synthesized.
- Liquid crystal properties are investigated by DSC and POM techniques.
- Theoretical studies was also studied.
- Smectic phase in lower members and nematic phase appeared in higher members.