On N(k)-Mixed Quasi Einstein Manifolds

H G Nagaraja

Department of Mathematics, Central College, Bangalore University, Bangalore-560 001, Karnataka, India.

Abstract. In this paper N(k)-Mixed Quasi Einstein Manifolds \((N(k) - (MQE))\) are introduced and the existence of these manifolds is proved. We give hyper surfaces of Euclidean spaces as examples of \((N(k) - (MQE))\) manifolds and semi symmetric, ricci symmetric and ricci recurrent \((N(k) - (MQE))\) manifolds are studied.

2000 Mathematics Subject Classifications: 53C25

Key Words and Phrases: N(k)-mixed quasi Einstein, mixed quasi constant curvature, ricci recurrent, semi symmetric, ricci symmetric

1. Introduction

M.C.Chaki and R.K.Maity [1] introduced the concept quasi Einstein manifolds. A non-flat Riemannian manifold \((M^n, g)(n > 2)\) is said to be a quasi Einstein manifold if its ricci tensor \(S\) of type \((0, 2)\) is not identically zero and satisfies the condition

\[S(X, Y) = a g(X, Y) + bA(X)A(Y), \]

where \(a\) and \(b\) are smooth functions of which \(b \neq 0\) and \(A\) is a non zero 1-form such that \(g(X, U) = A(X)\), for all vector fields \(X\) and \(U\) is a unit vector field. U.C.De and Gopal Chandra Ghosh [4, 5] generalized the quasi Einstein manifolds. A non-flat Riemannian manifold \((M^n, g)(n > 2)\) is said to be a generalized quasi Einstein manifold if its ricci tensor \(S\) of type \((0, 2)\) is not identically zero and satisfies the condition

\[S(X, Y) = a g(X, Y) + bA(X)A(Y) + cB(X)V(Y), \]

where \(a\), \(b\) and \(c\) are certain smooth functions, \(A\) and \(B\) are non zero 1-forms, and \(U\) and \(V\) are unit vector fields corresponding to 1-forms \(A\) and \(B\) respectively such that \(g(X, U) = A(X)\), \(g(X, V) = B(X)\) and \(g(U, V) = 0\). The vector fields \(U\) and \(V\) are called generators of...
the quasi Einstein manifold. The k-nullity distribution $N(k)$ [8] of a Riemannian manifold M is defined by

$$N(k): p \rightarrow N_p(k) = \{Z \in T_p M | R(X,Y)Z = k(g(Y,Z)X - g(X,Z)Y)\}$$

for all $X,Y \in TM$ and k is a smooth function.

M.M.Tripathy and Jeong - Jik Kim [6] introduced the notion of $N(k)$-quasi Einstein manifold which is defined as follows: If the generator U belongs to the k-nullity distribution $N(k)$, then a quasi Einstein manifold (M^n, g) is called $N(k)$-quasi Einstein manifold. Motivated by the above definitions we give the following definition.

Definition 1. Let (M^n, g) be a non flat Riemannian manifold. If the ricci tensor S of (M^n, g) is non zero and satisfies

$$S(X,Y) = a g(X,Y) + b A(X)B(Y) + c B(X)A(Y), \tag{1}$$

where a,b and c are smooth functions and A and B are non zero 1-forms such that $g(X,U) = A(X)$ and $g(X,V) = B(X)$ for all vector fields X, and U and V being the orthogonal unit vector fields called generators of the manifold belong to $N(k)$, then we say that (M^n, g) is a $N(k)$-mixed quasi Einstein manifold and is denoted by $N(k)-(MQE)_n$.

In this paper we introduce another notion of a manifold of mixed quasi constant curvature similar to manifold of quasi constant curvature defined in [4]. A Riemannian manifold (M^n, g) is called a manifold of mixed quasi constant curvature if it is conformally flat and the curvature tensor $'R$ of type (0,4) satisfies the condition

$$'R(X,Y,Z,W) = p[g(Y,Z)g(X,W) - g(X,Z)g(Y,W)] + q [g(X,W)A(Y)B(Z) - g(X,Z)A(Y)B(W) + g(X,W)A(Z)B(Y) - g(X,Z)A(W)B(Y)] + s [g(Y,Z)A(W)B(X) - g(Y,W)A(Z)B(X) + g(Y,Z)A(X)B(W) - g(Y,W)A(X)B(Z)] \tag{2}$$

Let $\{e_i\}$ be an orthonormal basis of the tangent space at each point of the manifold. Taking $X = W = e_i$ and summing over $i, 1 \leq i \leq n$ in (2), we obtain

$$S(Y,Z) = (n-1)p g(Y,Z) + (n-1)q [A(Y)B(Z) + A(Z)B(Y)] + s [2g(Y,Z) - A(Z)B(Y) - A(Y)B(Z)]$$

which implies

$$S(Y,Z) = a g(Y,Z) + b A(Y)B(Z) + c A(Z)B(Y) \tag{3}$$

where $b = c = (n-1)q - s, a = (n-1)p + 2s$. i.e. the space (M^n, g) is mixed quasi Einstein. Thus we have

Theorem 1. A manifold of mixed quasi constant curvature is a mixed quasi Einstein manifold.
Conversely suppose \((M^n, g)\) is conformally flat mixed quasi Einstein manifold. Then
\[
R(X, Y)Z = \frac{1}{n-2} \{g(Y,Z)QX - g(X,Z)QY + S(Y,Z)X - S(X,Z)Y\}
- \frac{r}{(n-1)(n-2)} \{g(Y,Z)X - g(X,Z)Y\}. \tag{4}
\]

Here \(Q\) is Ricci operator defined by \(S(X, Y) = g(QX, Y)\).

From the above equation, we get
\[
R(X, Y, Z, W) = g(R(X, Y)Z, W)
= \frac{1}{n-2} \{g(Y,Z)S(X, W) - g(X,Z)S(Y, W)
+ S(Y,Z)g(X, W) - S(X,Z)g(Y, W)\}
- \frac{r}{(n-1)(n-2)} \{g(Y,Z)g(X, W) - g(X,Z)g(Y, W)\}. \tag{5}
\]

Taking \(X = Y = e_i\) and taking summation over \(i, 1 \leq i \leq n\) in (1), we obtain \(r = na\).
Substituting this in (5) and using (1), we get
\[
R(X, Y, Z, W) = p[g(Y,Z)g(X, W) - g(X,Z)g(Y, W)]
+ q[g(X, W)A(Y)B(Z) - g(X,Z)A(Y)B(W) + g(X, W)A(Z)B(Y)
- g(X, Z)A(W)B(Y)] + s[g(Y,Z)A(W)B(X) - g(Y, W)A(Z)B(X)
+ g(Y, Z)A(X)B(W) - g(Y, W)A(X)B(Z)]
\]
where \(p = \frac{a}{n-1}, q = \frac{b}{n-2}, s = \frac{c}{n-2}\), i.e. \((M^n, g)\) is a manifold of mixed quasi constant curvature.

2. Existence Theorem of a \(N(k)\)-mixed Quasi Einstein Manifolds

Theorem 2. If in a conformally flat Riemannian manifold \((M^n, g)\), the ricci tensor \(S\) satisfies the relation
\[
S(X, Z)g(Y, W) - S(Y, Z)g(X, W) = \beta(g(Y, Z)S(X, W) - g(X, Z)S(Y, W)) \tag{6}
\]
where \(\beta\) is a non zero scalar, then \((M^n, g)\) is a \(N(k)\)-mixed quasi Einstein manifold.

Proof. Let \(U\) be a vector field defined by \(g(X, U) = A(X)\), \(\forall X \in TM\).
Taking \(X = W = U\) in (6), we obtain
\[
S(Y, Z) = ag(Y, Z) + bA(Y)B(Z) + cA(Z)B(Y) \tag{7}
\]
where \(a = \frac{-\alpha\beta}{u}, \alpha = S(U, U), u = g(U, U), b = \frac{1}{u}, c = \frac{\beta}{u}\), and \(S(U, Z) = S(Z, U) = g(QZ, U) = A(QZ) = B(Z)\). Therefore \((M^n, g)\) is mixed quasi Einstein.
If \((M^n, g)\) is conformally flat, then taking \(Z = U\) in (4), we obtain

\[
R(X, Y)U = \frac{1}{n-2}[A(Y)QX - A(X)QY + S(Y, U)X - S(U, Y)X - S(Y, U)X - S(X, U)Y]
- \frac{r}{(n-1)(n-2)}[A(Y)X - A(X)Y]
\]

(8)

Therefore we have

\[
g \]

which can be rewritten as

\[
\]

Taking \(\beta = 1\) in (6), we get

\[
S(X, Z)g(Y, W) - S(Y, Z)g(X, W) - g(Y, Z)S(X, W) + g(X, Z)S(Y, W) = 0
\]

Taking \(Z = U\) in the above equation, we obtain

\[
S(X, U)g(Y, W) - S(Y, U)g(X, W) - A(Y)S(X, W) + A(X)S(Y, W) = 0,
\]

which can be rewritten as \(g(S(X, U)Y - S(Y, U)X - A(Y)QX + A(X)QY, W) = 0, \forall W.\)

Therefore we have \(S(X, U)Y - S(Y, U)X - A(Y)QX + A(X)QY = 0.\)

Substituting this in (8), we get \(R(X, Y)U = k(A(Y)X - A(X)Y)\), where \(k = \frac{-r}{(n-1)(n-2)}.\)

Therefore we have \(U \in \mathbb{N}_p(k)\), where \(k = \frac{-r}{(n-1)(n-2)}.\)

Suppose \(V\) is a unit vector field orthogonal to \(U\). Then, we have \(V \in \mathbb{N}_p(k).\)

Hence \((M^n, g)\) is a \(N(k)\)-mixed quasi Einstein manifold.

As it is well known that a 3-dimensional Riemannian manifold is conformally flat.

Thus we have

Corollary 1. A 3-dimensional manifold is \(N(k)\)\(-\)mixed quasi Einstein manifold provided (6) holds.

3. Example of a \(N(k)\)\(-\)\((MQE)_n\) manifold

Let \((M^n, \tilde{g})\) be a hypersurface of the Euclidean space \(E^{n+1}\). Let \(A\) be a \((1,1)\) tensor corresponding to the normal valued second fundamental tensor \(H\).

\[
\tilde{g}(A_\xi(X), Y) = g(H(X, Y), \xi)
\]

(10)

where \(\xi\) is a unit normal vector field and \(X\) and \(Y\) are tangent vector fields.

Further

\[
H_\xi(X, Y) = \tilde{g}(A_\xi(X), Y)
\]

(11)

The hypersurface \((M^n, \tilde{g})\) is quasi umbilical if

\[
H_\xi(X, Y) = a\tilde{g}(X, Y) + \beta C(X)D(Y)
\]

(12)

In view of (10), we have

\[
H(X, Y) = a\tilde{g}(X, Y)\xi + \beta C(X)D(Y)\xi.
\]

(13)
The Gauss equation of M^n in E^{n+1} can be written as
\begin{equation}
\bar{g}(\bar{R}(X,Y)Z,W) = \bar{g}(H(X,W),H(Y,Z)) - \bar{g}(H(W,Y),H(Z,X)) \tag{14}
\end{equation}

From (12) and (14), we have

\begin{align*}
\bar{R}(X,Y,Z,W) &= \alpha^2 g(X,W)g(Y,Z) + \alpha\beta g(X,W)C(Y)D(Z) \\
&+ \alpha\beta g(Y,Z)C(X)D(W) + \beta^2 C(X)C(Y)D(W)D(Z) \\
&- \alpha^2 g(W,Y)g(Z,X) - \alpha\beta g(W,Y)C(Z)D(X) \\
&- \alpha\beta g(Z,X)C(W)D(Y) - \beta^2 C(W)D(Y)C(Z)D(Z)
\end{align*}

Contracting the above equation with $X = W = e_i$ and taking summation over $i, 1 \leq i \leq n$, we obtain

\begin{equation}
\bar{S}(Y,Z) = a g(Y,Z) + b C(Y)D(Z) + c C(Z)D(Y)
\end{equation}

where $a = (n-1)\alpha^2, b = (n-1)\alpha\beta + \beta^2, c = -\beta(2\alpha + \beta)$.

Hence (M^n, \bar{g}) is a mixed quasi Einstein manifold.

Suppose U and V are unit orthogonal vectorfields corresponding to the 1-forms C and D respectively. Then putting $Z = U$ in (13), we get

\begin{equation}
H(X,U) = \alpha C(X)\xi. \tag{15}
\end{equation}

Putting $Z = U$ in (14) and using (15), we get

\begin{equation}
\bar{R}(X,Y)U = k(C(Y)X - C(X)Y)
\end{equation}

where $k = \alpha^2$. Similarly we can show that

\begin{equation}
\bar{R}(X,Y)V = k(D(Y)X - D(X)Y)
\end{equation}

where $k = \alpha^2$. Thus we have

Theorem 3. A quasi umbilical hypersurface of a Euclidean space E^{n+1} is a $N(k)$-mixed quasi Einstein manifold.

4. Ricci Curvature, Eigen Vectors and Associated Scalars of a $N(k)-(MQE)_n$

From (1) we have $S(U,U) = a = S(V,V), b = S(U,V) = S(V,U) = c$, since $g(U,V) = 0$.

Therefore only one of b or c is sufficient to define a mixed quasi Einstein space. A mixed quasi Einstein space may be defined as a Riemannian manifold in which ricci tensor S satisfies

\begin{equation}
S(X,Y) = a g(X,Y) + b(A(X)B(Y) + B(X)A(Y)),
\end{equation}

It is well known that for a unit vector field X, $S(X,X)$ is the ricci curvature in the direction of X. Now if X is a unit vector field in the section spanned by U and V, then we have

\begin{equation}
1 = g(X,X) = g(aU + \beta V, aU + \beta V) = \alpha^2 + \beta^2,
\end{equation}
since \(g(U, V) = 0 \) and \(g(U, U) = g(V, V) = 1 \). Now
\[
S(X, X) = S(\alpha U + \beta V, \alpha U + \beta V) = a + 2bA(X)B(X).
\]

Thus we can state that

Theorem 4. In a \(N(k) - (MQE)_n \) manifold, the ricci curvature in the direction of both \(U \) and \(V \) is \('a' \) and the ricci curvature in all other directions of the section of \(U \) and \(V \) is \(a + 2bA(X)B(X) \).

Let \((M^n, g) \) be a \(N(k) - (MQE)_n \) manifold.
Then \(S(U, U) = S(V, V) = a \) from which we get \(g(QU, U) = g(QV, V) = a \).
Since \(U, V \in N_p(k) \), we have,
\[
g(R(X, Y)U, W) = k \{A(Y)g(X, W) - A(X)g(Y, W)\}.
\]

Putting \(X = W = e_i \) and taking summation over \(i, 1 \leq i \leq n \), we obtain
\[
S(Y, U) = (n - 1)kA(X) \quad (16)
\]
Similarly we can get
\[
S(Y, V) = (n - 1)kB(X) \quad (17)
\]
From (1), we have
\[
S(X, U) = aA(X) + bB(X) \quad (18)
\]
\[
S(X, V) = bA(X) + aB(X) \quad (19)
\]
Substracting (17) from (16) and (19) from (18), and comparing the resulting equations, we obtain
\[
k = \frac{a - b}{n - 1}.
\]
Therefore
\[
S(X, U) = (a - b)g(X, U)
\]
and
\[
S(X, V) = (a - b)g(X, V).
\]
Therefore \(U \) and \(V \) are eigen vectors corresponding to the eigen value \((a - b) \).

5. Semi Symmetric and Ricci Symmetric \(N(k) - (MQE)_n \) Manifolds

A Riemannian manifold \((M^n, g) \) is semi symmetric if \(R(X, Y).R = 0, \forall X, Y \in TM \).
Since \(U \) and \(V \) are in \(N_p(k) \), we have
\[
R(X, Y)U = k(A(Y)X - A(X)Y) \quad (20)
\]
\[
R(X, Y)V = k(B(Y)X - B(X)Y) \quad (21)
\]
The equation (20) is equivalent to
\[R(U, Y)Z = k \left(g(Y, Z)U - A(Z)Y \right) \] (22)
\[R(X, U)Z = k \left(A(Z)X - g(X, Z)U \right) \] (23)

The equation (21) is equivalent to
\[R(V, Y)Z = k \left(g(Y, Z)V - B(Z)Y \right) \] (24)
\[R(X, V)Z = k \left(B(Z)X - g(X, Z)V \right) \] (25)

If \((M^n, g)\) is semi symmetric then we have

Putting \(X = U\) and \(T = V\) in (26), then using (21) and (22), we get
\[k^2 \left\{ 2A(Z)B(Y)W + A(W)B(Z)Y - 2B(Z)g(Y, W)U \right\} = 0 \] (27)

From (27), we have
If \(k \neq 0\), then \(2A(Z)B(Y)W + A(W)B(Z)Y = 2B(Z)g(Y, W)U, \forall Y, Z, W \in TM\) holds.

Putting \(Z = V\) in the above equation, we get
\[g(Y, W)U = A(W)Y \]

Taking covariant derivative on both sides of the above equation with respect to \(Z\), we obtain
\[g(X, Y)\nabla_Z U = (ZA(Y)X - A(Y)) \nabla_Z X, \forall X, Y \]

Putting \(Y = V\), we get \(B(X)\nabla_Z U = 0\).
Since \(B(X) \neq 0\), we obtain \(\nabla_Z U = 0\).
i.e. \(U\) is a parallel vector field.

Similarly by taking \(X = V\) and \(T = U\) in (26), we obtain \(\nabla_Z V = 0\).
i.e. \(V\) is a parallel vector field.

Conversely suppose that \(U\) and \(V\) are parallel vector fields. Then \(\nabla_Z U = 0\) and \(\nabla_Z V = 0\), which then imply that
\[R(X, Y)U = 0 \text{ and } R(X, Y)V = 0. \]
Substituting this in (26) with \(X = U\), we obtain \(R(U, X).R = 0\).
Similarly we get \(R(V, X).R = 0\).
Thus we can state that

Theorem 5. A \(N(k) - (MQE)_n\) manifold with \(k \neq 0\) satisfies \(R(U, X).R = 0 \text{ (or } R(V, X).R = 0)\) if and only if \(U \text{ (or } V\) is a parallel vector field.
Let \((M^n, g)\) be a \(N(k) - (MQE)_n\) ricci semi symmetric manifold. Then we have

\[S(R(X, Y)Z, W) + S(Z, R(X, Y)W) = 0 \]

(28)

Putting \(X = V\) in (28) we obtain

\[k \{ g(Y, Z)S(V, W) - B(Z)S(Y, W) + g(Y, W)S(Z, V) - B(W)S(Z, Y) \} = 0 \]

Putting \(W = V\) in the above equation, we get

\[k \left[S(Z, Y) - a g(Y, Z) + bA(Y)B(Z) - bA(Z)B(Y) \right] = 0 \]

If \(k \neq 0\) then we have \(S(Z, Y) = a g(Y, Z) - b A(Y) B(Z) + b A(Z) B(Y)\).

Comparing this with (1), we obtain \(b + c = 0\).

But we have \(b - c = 0\), \{ section 4 \}

Therefore \(b = 0\) and \(c = 0\). i.e. \((M^n, g)\) reduces to Einstein space which it is not.

Therefore we must have \(k = 0\).

Conversely suppose \(k = 0\). Then we obtain \(R(V, X)Y = 0\) which implies \(R(V, X).S = 0\). Similarly, we have, \(R(U, X).S = 0\). if and only if \(k = 0\).

Thus we have,

Theorem 6. A \(N(k) - (MQE)_n\) manifold satisfies \(R(V, X).S = 0\). and \(R(U, X).S = 0\) if and only if \(k = 0\).

6. Ricci Recurrent \(N(k) - (MQE)_n\) Manifolds

Let \((M^n, g)\) be a \(N(k) - (MQE)_n\) manifold. If \(U\) and \(V\) are parallel vector fields, then \(\nabla_X U = 0\) and \(\nabla_X V = 0\).

From which we get that \(R(X, Y)U = 0\) and \(R(X, Y)V = 0\). Therefore

\[S(X, U) = 0, S(X, V) = 0 \]

(29)

From (1), we have

\[S(X, U) = aA(X) + bB(X) \text{and} \]

\[S(X, V) = aB(X) + bA(X) \]

(30)

(31)

From (29), (30) and (31), we have \(a = b\).

Therefore we can rewrite the equation (1) in the following form:

\[S(X, Y) = a \{ g(X, Y) + A(X)B(Y) + B(X)A(Y) \} . \]

Taking the covariant derivative of the above equation with respect to \(Z\), we obtain

\[\nabla_Z S(X, Y) = d a(Z) \{ g(X, Y) + A(X)B(Y) + B(X)A(Y) \} \]
since $\nabla_X U = 0$ and $\nabla_X V = 0$ imply that $\nabla_Z A(X) = 0$ and $\nabla_Z B(X) = 0.$ Therefore $(\nabla_Z S)(X,Y) = \frac{d a(Z)}{a} S(X,Y),$ i.e. the manifold (M^n,g) is ricci recurrent.

Conversely, suppose that $N(k) - (MQE)_n$ manifold is ricci recurrent. Then

$$(\nabla_X S)(Y,Z) = D(X) S(Y,Z), D(X) \neq 0.$$ But

$$(\nabla_X S)(Y,Z) = XS(Y,Z) - S(\nabla_X Y,Z) - S(Y,\nabla_X Z)$$

Therefore

$$D(X) S(Y,Z) = XS(Y,Z) - S(\nabla_X Y,Z) - S(Y,\nabla_X Z)$$

Putting $Y = Z = U,$ we obtain

$$X a - a D(X) = 2 a \left(g(\nabla_X U, U) + B(\nabla_X U) \right)$$
i.e. $(d a - a D) X = 2 a B(\nabla_X U).$ since $g(U, U) = 1$ implies $g(\nabla_X U, U) = 0.$ Therefore $B(\nabla_X U) = 0$ if and only if

$$(d a)(X) = a D(X)$$ (32)

But $B(\nabla_X U) = 0$ implies that either U is a parallel vector field or $\nabla_X U \perp V.$ Similarly we have, if (32) holds then either V is a parallel vector field or $\nabla_X V \perp U.$

Thus we can state that

Theorem 7. A $N(k)(MQE)_n$ manifold, where the generators U and V are parallel is a ricci recurrent manifold. Conversely suppose that $N(k) - (MQE)_n$ manifold is ricci recurrent, then either the vector field U (or V) is parallel or $\nabla_X U \perp V$ (or $\nabla_X V \perp U$).

References

