QUINTUPLE PRODUCT IDENTITY AS A SPECIAL CASE OF RAMANUJAN'S $1\psi_1$ SUMMATION FORMULA

S. Bhargava
Department of Studies in Mathematics, University of Mysore,
Manasagangotri, Mysore - 570 006, India
sribhargava@hotmail.com

Chandrashekar Adiga
Department of Studies in Mathematics, University of Mysore,
Manasagangotri, Mysore - 570 006, India
adiga@hotmail.com

M. S. Mahadeva Naika*
Department of Mathematics, Bangalore University,
Central College Campus, Bangalore - 560 001, India
msmnaika@rediffmail.com

Communicated by K. Saito
Received March 17, 2010
Revised November 16, 2010

In this note we observe an interesting fact that the well-known quintuple product identity can be regarded as a special case of the celebrated $1\psi_1$ summation formula of Ramanujan which is known to unify the Jacobi triple product identity and the q-binomial theorem.

Keywords: Ramanujan’s $1\psi_1$ summation; triple product identity; quintuple product identity.

AMS Subject Classification: 11S23, 33D20, 05A19

1. Introduction

It is well-known that the Jacobi’s triple product identity [2]

$$(-q^2;q^2)_{\infty} \left(\frac{-q}{z};q^2 \right)_{\infty} \left(q^2; q^2 \right)_{\infty} = \sum_{n=0}^{\infty} q^{n^2} z^n, \quad |q| < 1, \quad z \neq 0,$$ \hspace{1cm} (1.1)

*Corresponding author
and the Euler-Cauchy q-binomial theorem

$$\frac{(at)_\infty}{(t)_\infty} = \sum_{n=0}^{\infty} \frac{(a)_n t^n}{(q)_n}, \quad |q| < 1, \quad |t| < 1,$$

are special cases of the $_1\psi_1$ summation of Ramanujan [3, p. 196], [1, p. 32].

If $|\beta q| < |z| < 1$ and $|q| < 1$, then

$$1 + \sum_{n=1}^{\infty} \frac{\left(\frac{1}{\beta n}; q^2\right)_n (-\alpha q z)^n}{\left(\frac{1}{\beta} q^2; q^2\right)_n} + \sum_{n=1}^{\infty} \frac{\left(\frac{1}{\beta n}; q^2\right)_n (-\frac{\beta q}{n})^n}{\left(\frac{1}{\beta} q^2; q^2\right)_n}$$

$$= \frac{(-q z; q^2)_\infty}{(-\alpha q z; q^2)_\infty} \frac{(-\frac{\alpha q}{n}; q^2)_\infty}{(-\frac{\frac{\beta q}{n}}{q^2}; q^2)_\infty} (\alpha q^2; q^2)_\infty (\beta q^2; q^2)_\infty.$$

Here, as usual,

$$(a)_0 : = (a; q)_0 = 1,$$

$$(a)_\infty : = (a; q)_\infty : = \prod_{n=0}^{\infty} (1 - a q^n), \quad |q| < 1,$$

and

$$(a)_n : = \frac{(a)_\infty}{(aq^n)_\infty}, \quad n : \text{any integer}.$$

In fact, put $\alpha = \beta = 0$ in (1.3) to obtain (1.1) and put $\alpha = \frac{1}{n}, \beta = \frac{4}{n}, z = \frac{\alpha q}{n}$ and then replace q^2 by q and b by q in (1.3) to obtain (1.2). The purpose of the present paper is to show that the quintuple product identity given by (2.1) below can also be regarded as a special case of the $_1\psi_1$ summation (1.3). It is however customary to write the quintuple product identity in the equivalent form

$$(-x)_\infty \left(\frac{-q}{x}\right)_\infty (q)_\infty \left(\frac{q x^2; q^2}{x}\right)_\infty \left(\frac{x^2 q^2}{x}\right)_\infty = \sum_{n=-\infty}^{\infty} (-1)^n q^{3n^2 + 3n} (x^{3n+1} + x^{-3n}).$$

This equivalence is evident on using the easily verifiable identities

$$\frac{(x^2)_{\infty}}{(x)_{\infty}} = (-x)_{\infty} \left(\frac{x^2 q^2}{q}\right)_{\infty}$$

and

$$\frac{\left(\frac{q}{x}\right)_\infty}{\left(\frac{q}{x}\right)_\infty} = \left(-x\right)_{\infty} \left(\frac{q}{x}\right)_{\infty} \left(\frac{x^2 q^2}{x}\right)_{\infty},$$

on the left of (2.1).
2. Main Result

Theorem 2.1. If $|q|<1$ and $x \neq 0$, then
\[
\left(\frac{x^2}{q}\right)_\infty \frac{(\varphi \eta)}{(\varphi \xi)}_\infty = \sum_{n=0}^{\infty} (-1)^n q^{\frac{n(n+1)}{2}} (x^{3n+1} + x^{-3n}).
\] (2.1)

Proof. The $1\psi_1$-summation formula (1.3) can be written as
\[
\left(\frac{x^2}{q}\right)_\infty \frac{(\varphi \eta)}{(\varphi \xi)}_\infty = \sum_{n=0}^{\infty} \frac{(\varphi \eta)}{(\varphi \xi)}_n \frac{\alpha^n x^{2n}}{(\beta q)_n} + \sum_{n=0}^{\infty} \frac{(\varphi \eta)}{(\varphi \xi)}_n \frac{\beta^n}{(\alpha q)_{n+1}}
\]
which gives
\[
\left(\frac{x^2}{q}\right)_\infty \frac{(\varphi \eta)}{(\varphi \xi)}_\infty = \sum_{n=0}^{\infty} (-1)^n q^\frac{n(n+1)}{2} x^{2n} - q x^2 \sum_{n=0}^{\infty} \frac{(\varphi \eta)}{(\varphi \xi)}_n \frac{q^n}{x^n}.
\] (2.2)
Comparing this with (2.1), we now need only write the right side in power series of x. For this, put $b = q, a = \frac{1}{\alpha}, t = -\alpha q^{\frac{1}{2}} x$ and $c = \beta q$ in the well-known Heine's transformation [1]
\[
\sum_{n=0}^{\infty} \frac{(a)_n (b)_n t^n}{(c)_n (q)_n} = \frac{\varphi \chi \eta}{(c)_\infty (q)_\infty} \sum_{n=0}^{\infty} \frac{(b)_n (\frac{\alpha x}{\beta})}{(bt)_n (q)_n} (\frac{c}{q})^n
\]
to obtain
\[
\sum_{n=0}^{\infty} \frac{(\frac{1}{\alpha})_n}{(\beta)_{n+1}} (-\alpha q^{\frac{1}{2}} x)^n = \sum_{n=0}^{\infty} \frac{(-\alpha q^{\frac{1}{2}} x)^n}{(-\alpha q^{\frac{1}{2}} x)_{n+1}}.
\] (2.3)
Letting α to 0 in (2.3), replacing x by $-q^{\frac{1}{2}} x^2$ and then putting $\beta = x$, we obtain
\[
\sum_{n=0}^{\infty} (-1)^n q^\frac{n(n+1)}{2} x^{2n} (x)_{n+1} = \sum_{n=0}^{\infty} (x)_n x^n.
\] (2.4)
Now,
\[
\sum_{n=0}^{\infty} (x)_n x^n = 1 + x(1 - x) \sum_{n=0}^{\infty} (xq)_n x^n
\] (2.5)
and
\[
(1 - x) \sum_{n=0}^{\infty} (xq)_n x^n = 1 - x^2 q \sum_{n=0}^{\infty} (xq)_n (xq)^n.
\] (2.6)
Employing (2.6) in (2.5), we obtain the functional equation
\[
\sum_{n=0}^{\infty} (x)_n x^n = 1 + x - x^3 q \sum_{n=0}^{\infty} (xq)_n (xq)^n.
\] (2.7)
Seeking the power series expansion
\[
\sum_{0}^{\infty} (x)_n x^n = \sum_{0}^{\infty} c_n(q) x^n,
\]
(2.7) gives
\[
\sum_{0}^{\infty} c_n(q) x^n = 1 + x - x^3 q \sum_{0}^{\infty} c_n(q) x^n q^n.
\]
Comparing the coefficients of \(x^n\) \((n \geq 1)\), we obtain
\[
c_{3n} = -q^{3n-2} c_{3n-3},
\]
\[
c_{3n+1} = -q^{3n-1} c_{3n-2}
\]
and
\[
c_{3n+2} = -q^{3} c_{3n-1}.
\]
These give on iteration,
\[
c_{3n} = (-1)^n q^{(3n-2)+(3n-5)+...+1} c_0(q) = (-1)^n q^{\frac{n(3n-1)}{2}},
\]
\[
c_{3n+1} = (-1)^n q^{\frac{n(3n+1)}{2}}
\]
and
\[
c_{3n+2} = 0.
\]
Thus we have the power series development,
\[
\sum_{0}^{\infty} (x)_n x^n = \sum_{0}^{\infty} c_n(q) x^n = \sum_{0}^{\infty} (-1)^n q^{\frac{n(3n-1)}{2}} x^{3n} + \sum_{0}^{\infty} (-1)^n q^{\frac{n(3n+1)}{2}} x^{3n+1}.
\]
(2.8)
Employing (2.8) in the second sum on the right of (2.2), we obtain the power series
\[
-\frac{q}{x^2} \sum_{0}^{\infty} \left(\frac{q}{x}\right)_n \left(\frac{q}{x}\right)^n = -\sum_{-\infty}^{1} (-1)^n q^{\frac{n(3n+1)}{2}} x^{3n+1} + \sum_{-\infty}^{1} (-1)^n q^{\frac{n(3n-1)}{2}} x^{3n}.
\]
(2.9)
Using (2.4), (2.8) and (2.9) in (2.2), we have the required identity (2.1).

Acknowledgment
The authors wish to thank the referees for their valuable suggestions.

References
3. S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.