ON MEROMORPHIC FUNCTIONS THAT SHARE A SMALL FUNCTION WITH ITS DERIVATIVES

HARINA P. WAGHAMORE AND RAJESHWARI S.

(COMMUNICATE BY DAVID KALAJ)

Abstract. In this paper, we study the problem of meromorphic functions sharing a small function with its derivative and prove one theorem. The theorem improves the results of Jin-Dong Li and Guang-Xin Huang [10].

1. Introduction

Let f be a nonconstant meromorphic function defined in the whole complex plane \mathbb{C}. It is assumed that the reader is familiar with the notations of the Nevanlinna theory such as $T(r,f), N(r,f)$ and so on, that can be found, for instance in [1].

Let f and g be two nonconstant meromorphic functions. Let a be a finite complex number. We say that f and g share the value a CM (counting multiplicities) if $f - a$ and $g - a$ have the same zeros with the same multiplicites and we say that f and g share the value a IM (ignoring multiplicities) if we do not consider the multiplicities. When f and g share 1 IM, let z_0 be a 1-points of f of order p, a 1-points of g of order q, we denote by $N_{11}(r,\frac{1}{f-1})$ the counting function of those 1-points of f and g where $p = q = 1$; and $N_{E}^{(2)}(r,\frac{1}{f-1})$ the counting function of those 1-points of f and g where $p = q \geq 2$. $\overline{N}_L(r,\frac{1}{f-1})$ is the counting function of those 1-points of both f and g where $p > q$. In the same way, we can define $N_{11}(r,\frac{1}{g-1}), N_{E}^{(2)}(r,\frac{1}{g-1})$ and $\overline{N}_L(r,\frac{1}{g-1})$. If f and g share 1 IM, it is easy to see that

$$\overline{N}(r,\frac{1}{f-1}) = N_{11}(r,\frac{1}{f-1}) + \overline{N}_L(r,\frac{1}{f-1}) + \overline{N}_L(r,\frac{1}{g-1}) + N_{E}^{(2)}(r,\frac{1}{g-1})$$

Let f be a nonconstant meromorphic function. Let a be a finite complex number, and k be a positive integer, we denote by $N_k(r,\frac{1}{f-a}) (or \overline{N}_k(r,\frac{1}{f-a}))$ the counting function for zeros of $f - a$ with multiplicity $\leq k$ (ignoring multiplicities), and by $\overline{N}_k(r,\frac{1}{f-a}) (or \overline{N}_k(r,\frac{1}{f-a}))$ the counting function for zeros of $f - a$ with multiplicity

2000 Mathematics Subject Classification. 35A07, 35Q53.
Key words and phrases. Uniqueness, Meromorphic function, Weighted sharing.
©2016 Universiteti i Prishtinës, Prishtinë, Kosovë.
atleast \(k \) (ignoring multiplicities). Set
\[
N_k(r, \frac{1}{f-a}) = N(r, \frac{1}{f-a}) + N(2r, \frac{1}{f-a}) + \cdots + N(kr, \frac{1}{f-a})
\]
\[
\Theta(a, f) = 1 - \limsup_{r \to \infty} \frac{N(r, \frac{1}{f-a})}{T(r, f)}, \quad \delta(a, f) = 1 - \limsup_{r \to \infty} \frac{N(r, \frac{1}{f-a})}{T(r, f)}.
\]
We further define
\[
\delta_k(a, f) = 1 - \limsup_{r \to \infty} \frac{N_k(r, \frac{1}{f-a})}{T(r, f)}.
\]
Clearly
\[
0 \leq \delta(a, f) \leq \delta_k(a, f) \leq \delta_{k-1}(a, f) \leq \cdots \leq \delta_2(a, f) \leq \delta_1(a, f) = \Theta(a, f)
\]

Definition 1.1 (see [3]). Let \(k \) be a nonnegative integer or infinity. For \(a \in \overline{\mathbb{C}} \) we denote by \(E_k(a, f) \) the set of all \(a \)-points of \(f \), where an \(a \)-point of multiplicity \(m \) is counted \(m \) times if \(m \leq k \) and \(k+1 \) times if \(m > k \). If \(E_k(a, f) = E_k(a, g) \), we say that \(f, g \) share the value \(a \) with weight \(k \).

We write \(f, g \) share \((a, k) \) to mean that \(f, g \) share the value \(a \) with weight \(k \); clearly if \(f, g \) share \((a, k) \), then \(f, g \) share \((a, p) \) for all integers \(p \) with \(0 \leq p \leq k \). Also, we note that \(f, g \) share a value \(a \) IM or CM if and only if they share \((a, 0) \) or \((a, \infty) \), respectively.

A meromorphic function \(a \) is said to be a small function of \(f \) where \(T(r, a) = S(r, f) \), that is \(T(r, a) = o(T(r, f)) \) as \(r \to \infty \), outside of a possible exceptional set of finite linear measure. Similarly, we can define that \(f \) and \(g \) share a small function \(a \) IM or CM or with weight \(k \).

R. Bruck [4] first considered the uniqueness problems of an entire function sharing one value with its derivative and proved the following result.

Theorem A. Let \(f \) be a non-constant entire function satisfying \(N(r, \frac{1}{f}) = S(r, f) \).

If \(f \) and \(f' \) share the value \(1 \) CM, then \(\frac{f'-1}{f-1} = c \) for some nonzero constant \(c \).

Bruck [4] further posed the following conjecture.

Conjecture 1.1. Let \(f \) be a non-constant entire function, \(\rho_1(f) \) be the first iterated order of \(f \). If \(\rho_1(f) \) is not a positive integer or infinite, \(f \) and \(f' \) share the value \(1 \) CM, then \(\frac{f'-1}{f-1} = c \) for some nonzero constant \(c \).

Yang [5] proved that the conjecture is true if \(f \) is an entire function of finite order. Y. C. Yang [6] considered the problem of an entire or meromorphic function sharing one small function with its derivative and proved the following two theorems.

Theorem B. Let \(f \) be a non-constant entire function and \(a \equiv a(z)(\neq 0, \infty) \) be a meromorphic small function. If \(f - a \) and \(f(k) - a \) share \(0 \) CM and \(\delta(0, f) > \frac{3}{4} \), then \(f \equiv f(k) \).

Theorem C. Let \(f \) be a non-constant non-entire meromorphic function and \(a \equiv a(z)(\neq 0, \infty) \) be a meromorphic small function. If
(i) \(f \) and \(a \) have no common poles.
(ii) \(f - a \) and \(f(k) - a \) share \(0 \) CM.
(iii) \(4\delta(0, f) + 2(8 + k)\Theta(\infty, f) > 19 + 2k \),
then \(f \equiv f(k) \) where \(k \) is a positive integer.

In the same paper, Yu [6] posed the following open questions.
(i) Can a CM share be replaced by an IM share value?
(ii) Can the condition \(\delta(0, f) > \frac{3}{4} \) of theorem B be further relaxed?
(iii) Can the condition (iii) in theorem C be further relaxed?
Can in general the condition (i) of theorem C be dropped?

Theorem D. Let \(f \) be a non-constant entire function and \(a \equiv a(z)(\neq 0, \infty) \) be a meromorphic small function. If \(f - a \) and \(f^{(k)} - a \) share 0 CM and \(\delta(0, f) > \frac{1}{2} \), then \(f \equiv f^{(k)} \).

Lahiri and Sarkar [8] gave some affirmative answers to the first three questions imposing some restrictions on the zeros and poles of \(a \). They obtained the following results.

Theorem E. Let \(f \) be a non-constant meromorphic function, \(k \) be a positive integer, and \(a \equiv a(z)(\neq 0, \infty) \) be a meromorphic small function. If

(i) \(a \) has no zero (pole) which is also a zero (pole) of \(f \) or \(f^{(k)} \) with the same multiplicity.

(ii) \(f - a \) and \(f^{(k)} - a \) share \((0, 2)\)

(iii) \(2\delta_{2+k}(0, f) + (4 + k)\Theta(\infty, f) > 5 + k \) then \(f \equiv f^{(k)} \).

In 2005, Zhang [?] improved the above results and proved the following theorem.

Theorem F. Let \(f \) be a non-constant meromorphic function, \(k \geq 1 \), \(l \geq 0 \) be integers. Also let \(a \equiv a(z)(\neq 0, \infty) \) be a meromorphic small function. Suppose that \(f - a \) and \(f^{(k)} - a \) share \((0, l)\). If

\[l \geq 2 \quad \text{and} \quad (3 + k)\Theta(\infty, f) + 2\delta_{2+k}(0, f) > k + 4 \]

or \(l = 1 \) and

\[(4 + k)\Theta(\infty, f) + 3\delta_{2+k}(0, f) > k + 6 \]

or \(l = 0 \) and

\[(6 + 2k)\Theta(\infty, f) + 5\delta_{2+k}(0, f) > 2k + 10 \]

then \(f \equiv f^{(k)} \).

In 2015, Jin-Dong Li and Guang-Xiu Huang [?] proved the following Theorem.

Theorem G. Let \(f \) be a non-constant meromorphic function, \(k \geq 1 \), \(l \geq 0 \) be integers. Also let \(a \equiv a(z)(\neq 0, \infty) \) be a meromorphic small function. Suppose that \(f - a \) and \(f^{(k)} - a \) share \((0, l)\). If

\[l \geq 2 \quad \text{and} \quad (3 + k)\Theta(\infty, f) + \delta_{2}(0, f) + \delta_{2+k}(0, f) > k + 4 \]

\[l = 1 \quad \text{and} \quad \left(\frac{7}{2} + k\right)\Theta(\infty, f) + \frac{1}{2}\Theta(0, f) + \delta_{2}(0, f) + \delta_{2+k}(0, f) > k + 5 \]

or \(l = 0 \) and

\[(6 + 2k)\Theta(\infty, f) + 2\Theta(\infty, f) + \delta_{2}(0, f) + \delta_{1+k}(0, f) + \delta_{2+k}(0, f) > 2k + 10 \]

then \(f \equiv f^{(k)} \).

In this paper we pay our attention to the uniqueness of more generalised form of a function namely \(f^m \) and \((f^n)^{(k)} \) sharing a small function for two arbitrary positive integer \(n \) and \(m \).

Theorem 1.1. Let \(f \) be a non-constant meromorphic function, \(k \geq 1 \), \(l \geq 0 \) be integers. Also let \(a \equiv a(z)(\neq 0, \infty) \) be a meromorphic small function. Suppose
that $f^m - a$ and $(f^n)^{(k)} - a$ share $(0, l)$. If $l \geq 2$ and
$$ (k + 4)\Theta(\infty, f) + (k + 5)\Theta(0, f) > 2k + 9 - m \quad (1.7) $$

or $l = 1$ and
$$ (k + \frac{9}{2})\Theta(\infty, f) + (k + \frac{11}{2})\Theta(0, f) > 2k + 10 - m \quad (1.8) $$
or $l = 0$ and
$$ (2k + 7)\Theta(\infty, f) + (2k + 8)\Theta(0, f) > 4k + 15 - m \quad (1.9) $$
then $f^m \equiv (f^n)^{(k)}$.

Corollary 1.2. Let f be a non-constant meromorphic function, $m, k(\geq 1), l(\geq 0)$ be integers. Also let $a \equiv a(z)(\neq 0, \infty)$ be a meromorphic small function. Suppose that $f^m - a$ and $(f^n)^{(k)} - a$ share $(0, l)$.

If $l \geq 2$ and $\Theta(0, f) > \frac{4}{5}$
or $l = 1$ and $\Theta(0, f) > \frac{9}{11}$
or $l = 0$ and $\Theta(0, f) > \frac{7}{8} - \frac{1}{8}[7\Theta(\infty, f) - 7\Theta(0, f)]$
then $f^m \equiv (f^n)^{(k)}$.

2. Lemmas

Lemma 2.1 (see [10]). Let f be a non-constant meromorphic function, k, p be two positive integers, then
$$ N_p(r, \frac{1}{f(k)}) \leq N_{p+k}(r, \frac{1}{f}) + k\overline{N}(r, f) + S(r, f) $$
clearly $\overline{N}(r, \frac{1}{f(k)}) = N_1(r, \frac{1}{f})$

Lemma 2.2 (see [10]). Let
$$ H = (\frac{F''}{F'} - \frac{2F'}{F - 1}) - (\frac{G''}{G'} - \frac{2G'}{G - 1}) \quad (2.1) $$
where F and G are two non constant meromorphic functions. If F and G share 1 IM and $H \neq 0$, then
$$ N_{11}(r, \frac{1}{F - 1}) \leq N(r, H) + S(r, F) + S(r, G) $$

Lemma 2.3 (see [11]). Let f be a non-constant meromorphic function and let
$$ R(f) = \frac{\sum_{k=0}^{n} a_k f^k}{\sum_{j=0}^{m} b_j f^j} $$
be an irreducible rational function in f with constant coefficients a_k and b_j where $a_n \neq 0$ and $b_m \neq 0$. Then
$$ T(r, R(f)) = dT(r, f) + S(r, f), $$
where $d = \max\{n, m\}$.
3. Proof of the Theorem 1.2

Let \(F = \frac{L^m}{a} \) and \(G = \frac{(f^n)(a)}{a} \). Then \(F \) and \(G \) share \((1, l)\), except the zeros and poles of \(a(z) \). Let \(H \) be defined by (2.1)

Case 1. Let \(H \neq 0 \).

By our assumptions, \(H \) have poles only at zeros of \(F' \) and \(G' \) and poles of \(F \) and \(G \), and those 1-points of \(F \) and \(G \) whose multiplicities are distinct from the multiplicities of corresponding 1-points of \(G \) and \(F \) respectively. Thus, we deduce from (2.1) that

\[
N(r, H) \leq N\left(2, \frac{1}{H}\right) + N\left(1, \frac{1}{G}\right) + N\left(r, H\right)
+ N_0\left(r, \frac{1}{F'}\right) + N_0\left(r, \frac{1}{G'}\right) + N_L\left(r, \frac{1}{F-1}\right)
+ N_L\left(r, \frac{1}{G-1}\right)
\]

(3.1)

here \(N_0\left(r, \frac{1}{F'}\right) \) is the counting function which only counts those points such that \(F' = 0 \) but \(F(F-1) \neq 0 \).

Because \(F \) and \(G \) share 1 IM, it is easy to see that

\[
N\left(r, \frac{1}{F-1}\right) = N_{11}\left(r, \frac{1}{F-1}\right) + N_L\left(r, \frac{1}{F-1}\right) + N_L\left(r, \frac{1}{G-1}\right) + N_E^2\left(r, \frac{1}{G-1}\right)
\]

(3.2)

Using Lemma 2.2 and (3.1), (3.2) and (3.3) We get

\[
T(r, F) + T(r, G) \leq 3N\left(r, F\right) + N_2\left(r, \frac{1}{F}\right) + N_2\left(r, \frac{1}{G}\right)
+ N_{11}\left(r, \frac{1}{F-1}\right) + 2N_E^2\left(r, \frac{1}{G-1}\right)
+ 3N_L\left(r, \frac{1}{F-1}\right) + 3N_L\left(r, \frac{1}{G-1}\right) + S(r, F) + S(r, G)
\]

(3.4)

We discuss the following three sub cases.

Sub case 1.1. \(l \geq 2 \). Obviously.

\[
N_{11}\left(r, \frac{1}{F-1}\right) + 2N_E^2\left(r, \frac{1}{G-1}\right) + 3N_L\left(r, \frac{1}{F-1}\right) + 3N_L\left(r, \frac{1}{G-1}\right)
\]

\[
\leq N\left(r, \frac{1}{G-1}\right) + S(r, F)
\]

\[
\leq T(r, G) + S(r, F) + S(r, G)
\]

(3.5)
Combining (3.4) and (3.5), we get
\[T(r, F) \leq 3N(r, F) + N_2(r, \frac{1}{F}) + N_2(r, \frac{1}{G}) + S(r, F) \]
(3.6)
that is
\[T(r, f^m) \leq 3N(r, f^m) + N_2(r, \frac{1}{f^m}) + N_2(r, \frac{1}{(f^m)(k)}) + S(r, f) \]
By Lemma 2.1 for \(p = 2 \), we get
\[mT(r, f) \leq (k + 5)\overline{N}(r, \frac{1}{f}) + (k + 4)\overline{N}(r, f) + S(r, f) \]
So
\[(k + 4)\Theta(\infty, f) + (k + 5)\Theta(0, f) \leq 2k + 9 - m \]
which contradicts with (1.7).

Sub case 2. \(l = 1 \). It is easy to see that
\[N_{11}(r, \frac{1}{F - 1}) + 2N^{[2]}_E(r, \frac{1}{G - 1}) + 2\overline{N}_L(r, \frac{1}{F - 1}) + 3\overline{N}_L(r, \frac{1}{G - 1}) \leq N(r, \frac{1}{G - 1}) + S(r, F) \]
\[\leq T(r, G) + S(r, F) + S(r, G) \]
(3.7)
\[\overline{N}_L(r, \frac{1}{F - 1}) \leq \frac{1}{2}N(r, \frac{E'}{F'}) \]
\[\leq \frac{1}{2}N(r, \frac{F'}{F}) + S(r, F) \]
\[\leq \frac{1}{2}[\overline{N}(r, \frac{1}{F}) + \overline{N}(r, F)] + S(r, F). \]
(3.8)
Combining (3.4) and (3.7) and (3.8), we get
\[T(r, F) \leq N_2(r, \frac{1}{F}) + N_2(r, \frac{1}{G}) + \frac{7}{2}\overline{N}(r, F) + \frac{1}{2}\overline{N}(r, \frac{1}{F}) + S(r, F) \]
(3.9)
that is
\[mT(r, f) \leq N_2(r, \frac{1}{f^m}) + N_2(r, \frac{1}{(f^m)(k)}) + \frac{7}{2}\overline{N}(r, f^m) + \frac{1}{2}\overline{N}(r, \frac{1}{f^m}) + S(r, f). \]
By Lemma 2.1 for \(p = 2 \), we get
\[mT(r, f) \leq (k + \frac{9}{2})\overline{N}(r, f) + (k + \frac{11}{2})\overline{N}(r, \frac{1}{f}) + S(r, f) \]
So
\[(k + \frac{9}{2})\Theta(\infty, f) + (k + \frac{11}{2})\Theta(0, f) \leq 2k + 10 - m \]
which contradicts with (1.8).

Sub case 3. \(l = 0 \). It is easy to see that
\[
\begin{align*}
N_{11}(r, \frac{1}{F - 1}) + 2N^{[2]}_E(r, \frac{1}{G - 1}) + \overline{N}_L(r, \frac{1}{F - 1}) + 2\overline{N}_L(r, \frac{1}{G - 1}) \leq N(r, \frac{1}{G - 1}) + S(r, F) \\
\leq T(r, G) + S(r, F) + S(r, F)
\end{align*}
\]
\[\overline{N}_L(r, \frac{1}{F-1}) \leq N(r, \frac{1}{F-1}) - \overline{N}(r, \frac{1}{F-1}) \]
\[\leq N(r, \frac{F'}{F}) \leq N(r, \frac{F'}{F}) + S(r, F) \]
\[\leq \overline{N}(r, \frac{1}{F}) + \overline{N}(r, F) + S(r, F). \] (3.11)

Similarly, we have
\[\overline{N}_L(r, \frac{1}{G-1}) \leq \overline{N}(r, \frac{1}{G}) + \overline{N}(r, G) + S(r, F) \]
\[\leq N_1(r, \frac{1}{G}) + \overline{N}(r, F) + S(r, G). \] (3.12)

Combining (3.4) and (3.10) – (3.12), we get
\[T(r, F) \leq N_2(r, \frac{1}{F}) + N_2(r, \frac{1}{G}) + 2\overline{N}(r, \frac{1}{F}) \]
\[+ 6\overline{N}(r, F) + N_1(r, \frac{1}{G}) + S(r, F) \] (3.13)

that is
\[mT(r, f) \leq N_2(r, \frac{1}{f^m}) + N_2(r, \frac{1}{(f^n)(k)}) + 2\overline{N}(r, \frac{1}{f^m}) \]
\[+ 6\overline{N}(r, \frac{1}{f^m}) + N_1(r, \frac{1}{(f^n)(k)}) + S(r, f). \]

By Lemma 2.1 for \(p = 2 \) and for \(p = 1 \) respectively, we get
\[mT(r, f) \leq (2k + 8)\overline{N}(r, \frac{1}{F}) + (2k + 7)\overline{N}(r, f). \]

So
\[(2k + 7)\Theta(∞, f) + (2k + 8)\Theta(0, f) \leq 4k + 15 - m \]
which contradicts with (1.9).

Case 2. Let \(H \equiv 0 \).

on integration we get from (2.1)
\[\frac{1}{F-1} = \frac{C}{G-1} + D, \] (3.14)

where \(C, D \) are constants and \(C \neq 0 \). we will prove that \(D = 0 \).

Sub case 2.1. Suppose \(D \neq 0 \). If \(z_0 \) be a pole of \(f \) with multiplicity \(p \) such that \(a(z_0) \neq 0, ∞ \), then it is a pole of \(G \) with multiplicity \(np + k \) respectively. This contradicts (3.14). It follows that \(N(r, f) = S(r, f) \) and hence \(\Theta(∞, f) = 1 \). Also it is clear that \(\overline{N}(r, f) = \overline{N}(r, G) = S(r, f) \). From (1.7)-(1.9) we know respectively
\[(k + 5)\Theta(0, f) > k + 5 - m \] (3.15)
\[(k + \frac{11}{2})\Theta(0, f) > k + \frac{11}{2} - m \] (3.16)

and
\[(2k + 8)\Theta(0, f) > 2k + 8 - m \] (3.17)

Since \(D \neq 0 \), from (3.14) we get
\[\overline{N} \left(r, \frac{1}{F - (1 + \frac{1}{F})} \right) = \overline{N}(r, G) = S(r, f) \]
Suppose $D \neq -1$.

Using the second fundamental theorem for F we get

$$T(r, F) \leq \mathcal{N}(r, F) + \mathcal{N}(r, \frac{1}{F}) + \mathcal{N}\left(r, \frac{1}{F - (1 + \frac{1}{D})}\right)$$

$$\leq \mathcal{N}(r, \frac{1}{F}) + S(r, f)$$

i.e.,

$$mT(r, F) \leq \mathcal{N}(r, \frac{1}{F}) + S(r, f)$$

$$\leq mT(r, f) + S(r, f).$$

So, we have $mT(r, f) = \mathcal{N}(r, \frac{1}{f})$ and so $\Theta(0, f) = 1 - m$. Which contradicts (3.15) – (3.17).

If $D = -1$, then

$$\frac{F}{F - 1} = C \frac{1}{G - 1}$$

and from which we know $\mathcal{N}(r, \frac{1}{f}) = \mathcal{N}(r, G) = S(r, f)$ and hence, $\mathcal{N}(r, \frac{1}{f}) = S(r, f)$.

If $C \neq -1$,

we know from (3.18) that

$$\mathcal{N}\left(r, \frac{1}{G - (1 + C)}\right) = \mathcal{N}(r, F) = S(r, f).$$

So from Lemma 2.1 and the Second fundamental theorem we get

$$T(r, (f^n)^{(k)}) \leq \mathcal{N}(r, G) + \mathcal{N}(r, \frac{1}{G}) + \mathcal{N}\left(r, \frac{1}{G - (1 + C)}\right) + S(r, f)$$

$$\leq \mathcal{N}\left(r, \frac{1}{(f^n)^{(k)}}\right) + S(r, f)$$

$$mT(r, f) \leq (k + 1)\mathcal{N}(r, \frac{1}{f}) + k\mathcal{N}(r, f) + S(r, f),$$

which is absurd. So $C = -1$ and we get from (3.18) that $FG \equiv 1$, which implies

$$\left[\frac{(f^n)^{(k)}}{f^n}\right] = \frac{n^2}{f^{n+m}}.$$

In view of the first fundamental theorem, we get from above

$$(n + m)T(r, f) \leq k[\mathcal{N}(r, f) + \mathcal{N}(r, \frac{1}{f})] + S(r, f) = S(r, f),$$

which is impossible.

Sub case 2.2. $D = 0$ and so from (3.14) we get

$$G - 1 \equiv C(F - 1).$$

If $C \neq 1$, then

$$G \equiv C(F - 1 + \frac{1}{C})$$

and $\mathcal{N}(r, \frac{1}{G}) = \mathcal{N}\left(r, \frac{1}{F - (1 + \frac{1}{C})}\right)$.

By the second fundamental theorem and Lemma 2.1 for $p = 1$ and Lemma 2.3 we have

$$mT(r, f) + S(r, f) = T(r, F)$$

$$\leq N(r, F) + N(r, f) + \left(r, \frac{1}{F - (1 - \frac{1}{e})}\right) + S(r, G)$$

$$\leq N(r, f^m) + N(r, f) + N\left(r, \frac{1}{(f^m)k}\right) + S(r, f)$$

$$\leq N(r, f) + N\left(r, \frac{1}{f}\right) + (k + 1)N\left(r, \frac{1}{f}\right) + kN(r, f) + S(r, f)$$

$$\leq (k + 2)N\left(r, \frac{1}{f}\right) + (k + 1)N(r, f) + S(r, f).$$

Hence

$$(k + 1)\Theta(\infty, f) + (k + 2)\Theta(0, f) \leq 2k + 3 - m.$$

So, it follows that

$$(k + 4)\Theta(\infty, f) + (k + 5)\Theta(0, f) \leq 3\Theta(\infty, f) + (k + 1)\Theta(\infty, f)$$

$$+ (k + 3)\Theta(0, f) + 2\Theta(0, f)$$

$$\leq 2k + 9 - m$$

$$(k + \frac{9}{2})\Theta(\infty, f) + (k + \frac{11}{2})\Theta(0, f) \leq 2k + 10 - m,$$

and

$$(2k + 7)\Theta(\infty, f) + (2k + 8)\Theta(0, f) \leq 4k + 15 - m.$$

This contradicts (1.7) - (1.9). Hence $C = 1$ and so $F \equiv G$, that is $f^m \equiv (f^n)^{(k)}$. This completes the proof of the theorem.

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

HARINA P. WAGHAMORE
Department of Mathematics, Central College Campus, Bangalore University, Bangalore-560 001, INDIA
E-mail address: harinapw@gmail.com

RAJESHWARI S.
Department of Mathematics, Central College Campus, Bangalore University, Bangalore-560 001, INDIA
E-mail address: rajeshwaripreetham@gmail.com