In planta transformation strategy to generate transgenic plants in chickpea: proof of concept with a cry gene
In planta Transformation Strategy to Generate Transgenic Plants in Chickpea: Proof of Concept with a cry Gene

M. Gowri Neelima¹*, S. V. Ramu², Rohini Srieevathsā¹, B. M. Asha Rani³, A. R. V. Kumar⁴ and M. C. Gayatri⁴

¹Department of Botany, ²Department of Bacteriology, Bangalore University, Jnanabharathi, Bangalore 560 056, India
³Department of Crop Physiology, ⁴Department of Genetics and Plant Breeding, ⁵Department of Entomology,
University of Agricultural Sciences, GKVK, Bangalore 560 065, India

MS received 23 December 2008; accepted 10 May 2009

The paper presents a non-tissue culture-based transformation of chickpea using cry1A(a)F gene with 5'UTR. The protocol involves raising of plant transformants (T0 plants) directly from Agrobacterium-infected young seedlings. The apical meristem of the seedling axes were targeted for transformation. The resulting chimeric plants were allowed to grow in the greenhouse and the transgenics were analysed in the T1 generation. The T1 generation plants were raised in the greenhouse and initial screening was carried out in 109 plants using ELISA for the expression of the cry1A(a)F protein. On the basis of this, the plants were grouped as non-transformants and transformants, expressing low and high level of the cry protein. The plants expressing the cry1A(a)F protein in the range of 2.06-9.70 µg/g fr wt were selected for further analysis. Bioefficacy of these 44 plants against Helicoverpa armigera allowed identification of 14 plants that not only accumulated good amount of protein but were also effective against Helicoverpa. Molecular analysis by PCR for the amplification of both the cry1A(a)F and npn1 genes confirmed the transgenic nature of the selected plants. The protocol ensured generation of transgenic chickpea plants with considerable ease in a short time and might be applicable across different genotypes/cultivars of the crop and offers immense potential as a supplemental or an alternate protocol for generating transgenic plants of difficult-to-regenerate crops.

Keywords: Chickpea (Cicer arietinum), in planta transformation, Agrobacterium, cry gene, transgenics.

Introduction

Cicer arietinum (chickpea) is a protein-rich, food legume crop grown widely in India and in 40 countries throughout the world. Chickpea ranks third among the world’s pulse crops after dry bean and dry pea. Despite its significant nutritional value, the grain productivity is adversely affected and the crop suffers heavy losses primarily due to various biotic factors. Field infestation of Lepidopteron pod borer insects, Helicoverpa armigera and Heliotris virescens cause 22–35% damage. Cut worms (Agrotis sp.), leaf miner (Liriomyza cicerina, Phytomyza latvira), aphids (Aphis sp.), Callosobruchus species (storage pests) are the other pests which cause damage to the crop. Other than these, fungal diseases also lead to reduction in yield. A screening of cultivated genotypes has not identified inherent resistance (Sharma and Ortiz, 2000), breeders are turning to wild annual Cicer species as a possible source of desired traits. Even interspecific hybridization, with chickpea has been greatly unsuccessful (Ahmed et al., 1988), and the wild species have not responded well to introgression through conventional breeding techniques for yield improvement (Van Rheenen et al., 1993). Therefore emphasis is to find resistance sources from wild annual Cicer species. From this context, we need to resort to biotechnological approaches for crop improvement of chickpea against Lepidopteron insects using insecticidal proteins.

Introduction of Lepidopteron-specific toxin encoding genes of Bacillus thuringiensis into chickpea by genetic manipulation is a promising option for developing insect resistance. Major pre-requisite for the development of transgenic crops is a successful transformation protocol. Legumes are generally considered recalcitrant species, successful transformation protocol is still a limiting factor (Chakraborti et al., 2009). Nevertheless, a protocol that is devoid of tissue culture would be advantageous in chickpea. The technique that minimizes or avoids plant tissue culture compo-
nent is called the in planta transformation protocol. The feasibility of the in planta transformation protocols has been tested in Arabidopsis thaliana (Feldman and Marks, 1987), soybean (Chee et al., 1989) Medicago truncatula (Trieu et al., 2000), buck wheat (Bratic et al., 2007), wheat (Supathara et al., 2006) and rice (Supathara et al., 2005) which were difficult to regenerate by in vitro techniques. Our group has developed a similar meristem-directed in planta transformation strategy. It essentially involves in planta inoculation of embryo axes of germinating seeds and allowing them to grow into seedlings ex-vitro. The success of this methodology has been seen in many species like sunflower (Sankara Rao and Rohini, 1999), groundnut (Rohini and Sankara Rao, 2000a,b, 2001), safflower (Rohini and Sankara Rao, 2001), pigeon pea (Rao et al., 2008), bell pepper (Manoj Kumar et al., 2009) and field bean and cotton (Keshamma et al., 2008a,b). The present paper describes transformation of chickpea cv. JG-11 with 5’utr cry1AcF using the in planta transformation strategy and analysis of the T1 generation plants.

Materials and methods

Agrobacterium tumefaciens strain and plasmid vector

Binary vector, pBIN AR with Cry1AcF was developed by Dr P. Anand Kumar, NRCPB, IARI, New Delhi. A 525 bp UTR sequence was tagged to the 5’ region of the gene Cry1AcF (Figure 1) at the Smal site. The 5’utr cry1AcF is under the control of 35s CaMV promoter and ocs terminator. The binary vector has nptII under the control of Nos promoter and terminator as the selectable marker.

![Diagram of plasmid vector](image)

Figure 1. pBinB8 derivative Ti-plasmid construct cry1AcF:: nptII used for chickpea transformation. The cry1AcF coding region was inserted as a BamHI-Sall fragment between the 35S promoter and the OCS terminator in the pBinB8 vector. The nptII gene conferring resistance to kanamycin was used as selectable marker for chickpea transformation.

Plant material and in planta transformation

Cicer arietinum Desi variety JG-11 seeds were surface sterilized with Bavistin for 20 min, and then rinsed 3–4 times thoroughly in distilled water. The seeds were imbibed overnight with sterile distilled water and were placed on wet blotting paper in petri plates, in dark for germination.

In planta transformation protocol (Keshamma et al., 2008) was followed to develop the primary transformants in chickpea. The meristem of 2-day-old germinating seedlings was pricked with a needle and immersed in the Agrobacterium suspension for 1 h. Following infection, the seedlings were transferred to soilrite in bottles and maintained for a week under growth room conditions before being shifted to greenhouse. The chimeric T0 plants thus obtained were maintained in greenhouse and T1 seeds were harvested. T1 plants were screened for expression and efficacy of gene along with molecular confirmation.

Expression analysis by ELISA

Qualitative estimation of Cry1AcF expressed in transformed chickpea plantlets was made using a sandwich ELISA. The pre-coated ELISA plates from Desigen, India, were used for quantitative determination of expressed Cry1AcF protein in transgenic chickpea plants. Absorbance was measured at 450 nm by a microplate ELISA reader. Total soluble protein in plant extracts was assayed by Bradford’s method (Bradford, 1976).

Bioefficacy analysis

Entomocidal activity of Cry1AcF expressed in the tissues of the T1 chickpea transformants was assayed through leaf feeding bioassay, using neonate larvae of Helicoverpa armigera. Larvae of H. armigera were initially reared on artificial diet. Young chickpea leaves were kept turgid by wrapping the petiole with wet cotton. Subsequently, the leaves were challenged with 10 neonate larvae of H. armigera. Observations were recorded daily for four days on the number of dead and live larvae, percentage of leaf damage and the leaf condition.

Molecular analysis

Genomic DNA was extracted from chickpea leaves following the CTAB method (Dellaporta et al., 1983).
PCR was performed with the genomic DNA using cry1AcF gene-specific primers as well as nprII gene-specific primers. Nested PCR was performed for the cry1AcF gene products. In this reaction, the PCR product generated by gene-specific primers was used as a template and nested PCR carried out. To amplify all the fragments, PCR was initiated by a hot start of 94\(^\circ\) for 4 min followed by 31 cycles of 94\(^\circ\) for 1 min, 58\(^\circ\) for 45 sec, 72\(^\circ\) for 1 min with a final extension of 10 min. The amplification was confirmed by 0.8% agarose gel electrophoresis.

Statistical analysis

Data was analysed using MS excel software. Mean values of all the plant parameters were subjected to ANOVA (Sokal and Rohlf, 1969). Correlation and regression analysis was done following the method of Snedecor and Cochran (1967). Scatter plots and frequency distribution graphs were generated where necessary for representing the data.

Results

In planta transformation of chickpea variety JG-11

Approximately 50 seedlings were subjected to in planta transformation. Twenty seven plants survived after shifting to the pots in the greenhouse. Under the greenhouse conditions, the plants grew normally, flowered and set pods. These plants were designated as the T0 generation plants. Seeds were harvested, T1 generation plants generated and analysed for the transformants.

Analysis of T1 generation plants

Expression analysis by ELISA: Initial analysis of the T1 generation plants was by ELISA. All the 109 plants obtained from 27 T0 plants were analysed for expression. Approximately 40\% of the plants showed perceptible levels of cry protein (Figure 2). These 44 plants with cry protein content in the range of 2.06–9.70 \(\mu\)g/g fr wt were selected as putative transgenic plants and analysed further. Among these plants, only seven showed >6 \(\mu\)g/g fr wt of cry protein. However, all the putative transformants were assessed for bioefficacy by subjecting to leaf bioassay against *H. armigera*.

Bioassay of transgenic chickpea harbouring Cry1AcF against *H. armigera*: Bioefficacy of the plants against *Helicoverpa* also revealed significant variability in larval mortality and leaf damage (Figure 3A and 3B). The effect of the cry1AcF gene was also seen on the larva as there was a considerable difference in the size of the larva that fed on the transgenics and wild type (Figure 3C). The damage varied between 5\% and 82.5\%, whereas mortality varied between 10\% and 100\% (Figure 3D). A strong correlation was seen between these two parameters (Figure 3E). These experimental results gave clear evidence about the gene integration, expression and efficacy of the cry1AcF protein.

Expression and efficacy analysis therefore allowed the identification of putative transformants (Figure 3F). On the basis of analysis, 14 plants were selected that showed high cry protein with good bioefficacy. Further, these plants were confirmed for the presence of transgene at molecular level.

Molecular analysis

PCR analysis was carried out with the genomic DNA of the selected chickpea plants. Amplification of the expected fragments (Figure 4A and B) with both the cry1AcF gene and nprII gene-specific primers in all the 14 plants confirmed the integration of the transgenes in the chickpea genome. Further, nested PCR for the confirmation of the amplification of the cry1AcF gene in some randomly selected plants proved the authenticity of the PCR products (Figure 4C).

![Graph](image)

Figure 2. Frequency distribution of putative transgenics transformed with *utr-cry1AcF* gene for the quantity of cry protein in 44 T1 generation plants.
Discussion

The success in the generation of transformants lies with the regeneration response. This hampered the improvement of some of the crops that are called ‘recalcitrant’. These crops are not amenable to in vitro regeneration. However, the advent of non-tissue culture methods of transformations in Arabidopsis changed the scenario of transgenic technology (Bent, 2006). Chickpea being a legume is also less amenable to tissue culture. Still, efforts have been made towards development of regeneration protocols (Sarmah et al., 2004). However, there are limited reports of efficient rooting and establishment of chickpea plants in the greenhouse. Probably this was the reason for limited progress in genetic transformation of chickpea (Senthil et al., 2004). The few reports published on transgenic chickpea plants were using particle bombardment or Agrobacterium-mediated transformation (Kar et al., 1997; Sarmah et al., 2004; Sanyal et al., 2005; Indurker et al., 2007). Further, there are reports of agronomically important traits being introduced into chickpea (Sarmah et al., 2004; Sanyal et al., 2005) and very recently, a lectin gene was stably integrated and evaluated (Chakraborti et al., 2009). Still, serious efforts are needed to explore regeneration and transformation protocols to engineer agronomically desirable genes. In this direction, development of a transformation protocol that avoids or minimizes tissue culture is an alternative.
The transformation protocol presented in the paper is an in planta protocol which directs the Agrobacterium to the differentiated cells of the meristem. This protocol therefore results in the chimeric plants with some cells transformed. However, the generation of stable transformants depends on the type of cells transformed because the cells giving rise to reproductive structures if transformed will develop into stable transformants. Therefore, this requires generation of a large number of T0 plants which would eventually give rise to a larger number of T1 plants. This requires a stringent screening of the T1 generation plants for the selection of not only putative transformants but also high expressing plants. Different methods of screening can be done for the evaluation of T1 generation plants. In these in planta transformation strategies, often, the screenable marker gene is made use wherein the seedlings are germinated in the presence of the selectable marker at levels that are lethal to the wild type (Feldmann and Marks, 1987). This strategy is followed in most of the in planta strategies by several other groups and also in our earlier studies (Keshamma et al., 2008a, b). Zhao Shuand et al. (2008) standardized kanamycin at 200 mg l⁻¹ as optimum concentration for screening of transgenic mustard (Brassica juncea) seeds. Kojima et al. (2000) screened T1 seeds of buck wheat on genteticin at a concentration of 20 µg ml⁻¹ for five days. However, the target gene can also be used for screening of the T1 generation plants at both molecular level and expression level. Earlier, transgenic groundnut harbouring the cry1AcF gene (Keshamma et al., 2008a, b) was screened using PCR as a strategy. But this kind of screening would not be rigorous enough to select high expressing transgenics. Therefore screening transformants based on the expression of target gene may not only provide information on integration but also the transgene protein expression. This feature has been exploited in the present study and screening was carried out in the T1 generation plants by ELISA. Analysis by ELISA allowed identification of both transformants and high expressing lines. Among the 109 analysed plants, 44 showed significant expression of the cry protein indicating the stable integration of the gene in the plants. Although the expression to some extent is determined by integration site, as expected, significant variation was seen in the levels of protein expressed. Besides, their efficacy against the target pest is required to judge the performance of the plants. In this direction, the efficacy of the 5'utr cry1AcF gene was checked against H. armigera. The selected T1 generation plants showed a range in both percentage of damage and percentage of mortality. Some of the plants showed up to 100% mortality with less than 20% damage. These plants when corroborated with the cry protein accumulation showed more protein, confirming that the efficacy of these plants against H. armigera is because of the expression of the 5'utr cry1AcF. These results allowed the identification of 14 plants with corroborating expression and efficacy. PCR analysis further confirmed the integration of both the npIIl and the 5'utr cry1AcF gene substantiating the transgenic nature of these chickpea transgenic plants.

The present study thus demonstrates the transformability of chickpea with the in planta transformation protocol and generation of transformants that are effective against H. armigera. However, the stability of the gene in further generations needs to be elucidated.

References

Ahmad F, Sliskard A E and Scoles G J 1988 Investigations into the barrier(s) to interspecific hybridization between Cicer arietinum L. and eight other annual Cicer species; Plant Breed 100 : 193–198.

Chakraborti D, Sarkar A, Mondal H A and Das S Published online 29 January 2009. Tissue specific expression of poten insecticidal Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora, Transgen Res. vol. 4.

Dellaporta S L, Wood J and Hicks J B 1983 A plant DNA mini-preparation: version II; Plant Mol Biol Rep 1 : 19–21

Rohini V K and Sankara Rao K 2000b Embryo transformation, a practical approach for realizing transgenic plants of safflower (Carthamus tinctorius L.); Ann Bot 86 : 1043–1049.

Van Rheenen H A, Pandur P S P and Miranda J H 1993 How to accelerate the genetic improvement of a recalcitrant crop species such as chickpea; Curr Sci 65(4) : 414–417.

Zhao Shuang, Lei Jian Jun, Chen Guo J U and CAO BI Hao 2008 Application of kanamycin in transgenic mustard (Brassica juncea Cost); Hereditas (Beijing) 30(4) : 501–507.