A Note on Cubic Modular Equations of Degree Two*

M. S. Mahadeva Naika†

Department of Mathematics, Bangalore University, Central College Campus
Bangalore 560 001, Karnataka State, India

Received June 23, 2004, Accepted January 14, 2005.

Abstract

On Page 259 of his second notebook [3], Ramanujan recorded many cubic modular equations of degree 2. In this paper we establish several cubic modular equations of degree 2 akin to those in Ramanujan’s work. As an application of our results, we also establish some new $P - Q$ eta-function identities.

Keywords and Phrases: Cubic modular equations, Eta-function identities.

1. A Family of Cubic Modular Equations

The ordinary hypergeometric series $\,_{2}F_{1}(a,b;c;x)$ is defined by

$$\,_{2}F_{1}(a,b;c;x) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n x^n}{(c)_n},$$

*2000 Mathematics Subject Classification. Primary 33D15, 33D20; Secondary 11S23.
†E-mail: msmnaika@rediffmail.com
(a)_0 = 1, (a)_n = a(a+1)(a+2)...(a+n-1), for n ≥ 1, |x| < 1.

Let

\[Z(r) := Z(r; x) := _2 F_1 \left(\frac{1}{r}, \frac{r-1}{r}; 1; x \right) \]

and

\[q_r := q_r(x) := \exp \left(-\pi \csc \left(\frac{\pi}{r} \right) \frac{_2 F_1 \left(\frac{1}{r}, \frac{r-1}{r}; 1; 1-x \right)}{_2 F_1 \left(\frac{1}{r}, \frac{r-1}{r}; 1; x \right)} \right) , \]

where \(r = 2, 3, 4, 6 \) and \(0 < x < 1 \).

Let \(n \) denote a fixed natural number, and assume that

\[n \frac{_2 F_1 \left(\frac{1}{r}, \frac{r-1}{r}; 1; 1-\alpha \right)}{_2 F_1 \left(\frac{1}{r}, \frac{r-1}{r}; 1; \alpha \right)} = \frac{_2 F_1 \left(\frac{1}{r}, \frac{r-1}{r}; 1; 1-\beta \right)}{_2 F_1 \left(\frac{1}{r}, \frac{r-1}{r}; 1; \beta \right)} , \tag{1.1} \]

where \(r = 2, 3, 4 \) or 6. Then a modular equation of degree \(n \) in the theory of elliptic functions of signature \(r \) is a relation between \(\alpha \) and \(\beta \) induced by (1.1).

On Pages 257-262 of his second notebook [3, pp. 257-262], Ramanujan gives an outline of the theories of elliptic functions to alternate bases corresponding to the classical theory by way of statements of some results. Venkatachaliengar [4] examined some of these results. Proofs of all these identities can be found in [2, pp.122-123]. Recently, Adiga, Kim and Naika [1] also established some cubic modular equations in the theory of signature 3. Now we state a transformation formula which is useful in establishing several cubic equations of degree 2 in the theory of signature 3.
Lemma 1.1. (see [3, p. 258]). If
\[
\alpha := \alpha(q) = \frac{p(3 + p)^2}{2(1 + p)^3} \text{ and } \beta := \beta(q) = \frac{p^2(3 + p)}{4},
\]
(1.2)
then for \(0 \leq p \leq 1\),
\[
{2}F{1}\left(\frac{1}{3}, \frac{2}{3}; 1; \alpha\right) = (1 + p)_{2}F_{1}\left(\frac{1}{3}, \frac{2}{3}; 1; \beta\right).
\]
(1.3)
For a proof of Lemma 1.1, see the work of Berndt [2, p. 112].

Theorem 1.1. If \(\beta\) is of degree 2 over \(\alpha\) in the theory of signature 3, then

(i)
\[
m^3 = 3 \left(\frac{\beta(1 - \beta)}{\alpha(1 - \alpha)}\right)^{\frac{1}{3}} \left(\left(\frac{1 - \beta}{\alpha}\right)^{\frac{1}{3}} - \left(\frac{\beta}{1 - \alpha}\right)^{\frac{1}{3}}\right) + \frac{8}{m^3} \left(\frac{\beta(1 - \beta)}{\alpha(1 - \alpha)}\right),
\]
(1.4)

(ii)
\[
m^2 \left(\frac{\alpha(1 - \alpha)}{\beta^2(1 - \beta)^2}\right)^{\frac{1}{3}} = m^6 \left(\frac{\alpha(1 - \alpha)}{\beta(1 - \beta)}\right) + \frac{4}{3},
\]
(1.5)

(iii)
\[
m^4 \left(\frac{\beta(1 - \beta)}{\alpha^2(1 - \alpha)^2}\right)^{\frac{1}{3}} = 16 \left(\frac{\beta(1 - \beta)}{\alpha(1 - \alpha)}\right) + \frac{m^6}{3},
\]
(1.6)

(iv)
\[
\frac{8}{m^3} = \frac{\alpha}{\beta} - 3 \left(\frac{\alpha(1 - \alpha)^2}{\beta^2(1 - \beta)}\right)^{\frac{1}{3}},
\]
(1.7)

(v)
\[
m^3 = \frac{1 - \beta}{1 - \alpha} - 3 \left(\frac{\beta^2(1 - \beta)}{\alpha(1 - \alpha)^2}\right)^{\frac{1}{3}},
\]
(1.8)
(vi)
\[m^3 = 3 \left(\frac{\beta(1 - \beta)^2}{\alpha^2(1 - \alpha)} \right)^{\frac{1}{3}} - \frac{\beta}{\alpha}, \quad (1.9) \]

(vii)
\[\frac{8}{m^3} = 3 \left(\frac{\alpha^2(1 - \alpha)}{\beta(1 - \beta)^2} \right)^{\frac{1}{3}} - \frac{1 - \alpha}{\beta}, \quad (1.10) \]

(viii)
\[m = 3 \left(\frac{\beta}{\alpha^2} \right)^{\frac{1}{3}} - \frac{4 \beta}{m^2 \alpha}, \quad (1.11) \]

(ix)
\[m^2 = 3 \left(\frac{1 - \alpha}{(1 - \beta)^2} \right) - \frac{2}{m} \left(\frac{1 - \beta}{1 - \alpha} \right), \quad (1.12) \]

(x)
\[\left(\frac{\beta(1 - \alpha)^2}{\alpha^2(1 - \beta)} \right)^{\frac{1}{3}} = \left(\frac{(\alpha(1 - \beta)^2)^{\frac{1}{3}} - 3(\beta^2(1 - \alpha))^{\frac{1}{3}}}{3(\alpha(1 - \beta)^2)^{\frac{1}{3}} - (\beta^2(1 - \alpha))^{\frac{1}{3}}} \right) \quad (1.13) \]

and

(xi)
\[\left(\frac{\alpha(1 - \beta)^2}{\beta^2(1 - \alpha)} \right)^{\frac{1}{3}} = \left(\frac{(\beta(1 - \alpha)^2)^{\frac{1}{3}} - 3(\alpha^2(1 - \beta))^{\frac{1}{3}}}{3(\beta(1 - \alpha)^2)^{\frac{1}{3}} - (\alpha^2(1 - \beta))^{\frac{1}{3}}} \right). \quad (1.14) \]

Proof of (1.4). From (1.2), by elementary calculations, we have

\[1 - \alpha = \frac{(1 - p)^2(1 + p)}{2(1 + p)^3} \quad \text{and} \quad 1 - \beta = \frac{(1 - p)(2 + p)^2}{4} \quad (1.15) \]

Using (1.2) and (1.15) in (1.4), we find that

\[3 \left(\frac{\beta(1 - \beta)}{\alpha(1 - \alpha)} \right)^{\frac{1}{3}} \left(\left(\frac{1 - \beta}{\alpha} \right)^{\frac{1}{3}} - \left(\frac{\beta}{1 - \alpha} \right)^{\frac{1}{3}} \right) + \frac{8}{m^3} \left(\frac{\beta(1 - \beta)}{\alpha(1 - \alpha)} \right) \]
A Note on Cubic Modular Equations of Degree Two

\[(1 + p)^3 = m^3.\]

This completes the proof of (1.4).

The proofs of the identities (1.5) to (1.15) are similar to the proof of (1.4). We omit the details.

2. P-Q Eta-Function Identities

Following Ramanujan’s work, we define

\[\varphi(q) = f(q, q) = \sum_{n=-\infty}^{\infty} q^{n^2},\]

\[\psi(q) = f(q, q^3) = \sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}}\]

and

\[f(-q) = f(-q, -q^2) = \sum_{n=-\infty}^{\infty} (-1)^n q^{\frac{3n^2-1}{2}}\]

where

\[(a; q)_{\infty} = \prod_{n=0}^{\infty} (1 - aq^n), \ |q|<1.\]

In this section we obtain some new P−Q eta-function identities on employing modular equations in Section 2 and the following lemma:

Lemma 2.1. For \(0 < x < 1,\)

\[b(q) = (1 - x)^{\frac{1}{3}} z = \frac{f^3(-q)}{f(-q^3)} \text{ and } c(q) = x^{\frac{1}{3}} z = \frac{3q^{\frac{1}{6}} f^3(-q^3)}{f(-q)}. \quad (2.1)\]
For a proof of Lemma 2.1, see [2, p.109].

Theorem 2.1. (see [3, p. 327]). Let

\[
P = \frac{f(-q^2)}{q^{\frac{1}{2}} f(-q^3)} \quad \text{and} \quad Q = \frac{f(-q)}{q^{\frac{3}{2}}}. \tag{2.2}
\]

Then

\[
(PQ)^2 - 9 \frac{(PQ)^2}{(PQ)^2} = \left(\frac{Q}{P} \right)^3 - \left(\frac{P}{Q} \right)^3. \tag{2.3}
\]

Proof. Using (2.1) in (1.4) and then using (2.2), we obtain

\[
1 = \frac{P^5}{Q} + \frac{9P}{Q^5} + \frac{8P^6}{Q^6}. \tag{2.4}
\]

On simplification, we obtain (2.3).

Theorem 2.2. Let

\[
P = \frac{\psi^4(q)}{q \psi^4(q^3)} \quad \text{and} \quad Q = \frac{\psi^4(q^2)}{q^2 \psi^4(q^6)} . \tag{2.5}
\]

Then

\[
P^2 \left(\frac{P - 9}{P - 1} \right) = Q \left(\frac{Q - 9}{Q - 1} \right)^2. \tag{2.6}
\]

Proof. Using (2.1) in (1.13), we find that

\[
\frac{\varphi^4(-q)}{\varphi^4(-q^3)} = \frac{\psi^4(q) - 9q \psi^4(q^3)}{\psi^4(q) - q \psi^4(q^3)}. \tag{2.7}
\]
Using Entry 24(ii) and (iv) of Chapter 16 of Ramanujan’s second notebook [3, p. 198] in (2.7), we obtain

\[
\frac{f^6(-q)}{q^2 f^6(-q^3)} = \frac{\psi^2(q)}{q^2 \psi^2(q^3)} \frac{\psi^4(q) - 9q\psi^4(q^3)}{\psi^4(q) - q\psi^4(q^3)}
\]
(2.8)

and

\[
\frac{f^{12}(-q^2)}{f^{12}(-q^6)} = \frac{\psi^8(q)}{\psi^8(q^3)} \left(\frac{\psi^4(q) - 9q\psi^4(q^3)}{\psi^4(q) - q\psi^4(q^3)} \right)
\]
(2.9)

Using (2.5) in (2.8) and (2.9), we obtain the required result.

Theorem 2.3. Let

\[
P = \frac{\varphi(-q)}{\varphi(-q^3)} \quad \text{and} \quad Q = \frac{\varphi(-q^2)}{\varphi(-q^6)}.
\]
(2.10)

Then

\[
P \left(\frac{P - 9}{P - 1} \right)^2 = Q^2 \left(\frac{Q - 9}{Q - 1} \right).
\]
(2.11)

The proof of Theorem 2.3 is similar to the proof of Theorem 2.2, so we omit the details.

Remark. The $P - Q$ eta-function identities (2.6) and (2.12) appear to be new in the literature.

Acknowledgments

The author is grateful to Prof. H. M. Srivastava for his valuable suggestions.
References

