Spectroscopic studies of γ-rayed CaF$_2$:Sr

C. Pandurangappa a,*, B.N. Lakshminarasappa b

a Department of Physics, RNS Institute of Technology, Channasandra, Bangalore 560061, India
b Department of Physics, Jnanabharathi Campus, Bangalore University, Bangalore 560056, India

A R T I C L E I N F O

Article history:
Received 25 December 2011
Received in revised form 5 January 2013
Accepted 9 January 2013
Available online 18 January 2013

Keywords:
Single crystals
Optical absorption
Photoluminescence
Lattice defects
Color centers

A B S T R A C T

Optical absorption spectra of gamma irradiated (γ-rayed) Strontium (Sr) doped Calcium fluoride (CaF$_2$) single crystals showed a prominent absorption peak at \sim370 nm and two weak ones at \sim463 and 524 nm. At higher γ-dose the two weak peaks merged into a broad one at \sim520 nm. The Photoluminescence (PL) spectra showed a prominent emission at \sim394 nm when the crystals were excited at \sim240 nm. The excitation of samples at 370 nm showed strong emission at \sim530 nm with a shoulder at \sim465 nm. The optical absorption and PL intensities were found to increase with γ-dose. However, the optical absorption and PL intensities of CaF$_2$:Sr are found to be less than those of undoped CaF$_2$ single crystals.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Study of radiation induced defects in inorganic insulators has become a subject of rapidly growing interest in the past few years. Pure alkaline-earth halides are transparent from far ultraviolet to far infrared region. Chemical impurities when incorporated in the alkaline-earth halides even in parts-per-million show their absorption bands in the normally transparent spectral region. Also, defects produced by irradiation of samples with high energetic radiations invariably give rise to absorption bands towards longer wavelength side of the ultraviolet region or in the region of normal transparency. In this respect CaF$_2$ is an ionic crystal with a cubic structure in the space group Fm-3m. The transmission range of CaF$_2$ is 190–1100 nm. It leads to a variety of applications. These applications range from infrared monochromators [1] to lenses and windows. CaF$_2$ has been considered as a prime candidate for use as laser windows at both short and long wavelengths [2]. Its thermal and mechanical sensitivity led to strengthening of material without degrading the optical performance over its transparent range [3]. CaF$_2$ surfaces are highly resistant to water adsorption at room temperature. Earlier CaF$_2$ was used in thin film form as antireflection coating on glass lenses [4]. Much of the earlier research on CaF$_2$ was centered on studies concerning the determination of the electronic structure of CaF$_2$ and color-center phenomena. The concentration and distribution of extrinsic defects in CaF$_2$ crystal influence the absorption properties and homogeneity of the refractive index [5]. Rare earth (RE) doped CaF$_2$ is well studied. The dominating luminescence features in CaF$_2$ samples investigated are found to belong to RE impurities in their RE$^{3+}$ charge state. It has been shown that RE$^{2+}$ ions are stable only if the ground state of the RE$^{2+}$ ion is well below the edge of the conduction band. Charge transfer in the form of capturing an excited valence band electron by a RE$^{3+}$ ion is proved to convert a RE$^{3+}$ ion into a RE$^{2+}$ ion [6]. However, reports on radiation induced changes of optical properties of CaF$_2$ single crystals doped with elements like Magnesium (Mg), Strontium (Sr) are very few. Gamma irradiation of CaF$_2$:Sr has shown that the radiation stability of a system is an order of magnitude less than that of undoped CaF$_2$. Also, the probability of generation of stable radiation defects is found to be reduced [7–9]. In the present paper optical absorption and PL results of γ-irradiated Sr doped CaF$_2$ single crystals are presented. The effect of Sr doping on optical absorption and PL intensity and their variation with γ-dose are discussed.

2. Experimental details

Sr doped (1 mol%) CaF$_2$ single crystals grown by Bridgman technique were procured from Bhabha Atomic Research Center, Mumbai. The procured crystals were of 10 mm diameter and 20 mm length. Crystal slices of \sim1 mm thickness were cleaved from the bulk crystals and used for studies. The crystal slices were polished to high optical transparency. The structure of the procured crystals was confirmed by X-ray diffraction studies.

*Corresponding author. Tel.: +91 9741854545; fax: +91 080 286113882.
E-mail addresses: cpandu@gmail.com, cpandurangappa@yahoo.com (C. Pandurangappa).

0022-2313/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jlumin.2013.01.004
Due to limitations of single crystal XRD facility, powder X-ray diffraction pattern of the samples was recorded for the studies. The single crystals of CaF$_2$ were ground into a fine powder and characterized by powder XRD using PA analytical XPert PRO diffractometer with Cu-K$_{\alpha}$ radiation ($\lambda=1.54$ Å) in the scan range 10–90°. All the crystal slices were annealed at 500°C for 2 h. The annealed samples were irradiated with γ-rays from a Co60 source for doses ranging from 97 Gy to 9.72 kGy at room temperature. The irradiated samples were subjected to optical absorption measurements in the wavelength range 190–900 nm using JASCO V-570 UV/Vis/NIR spectrophotometer at room temperature. The PL emission spectra of the samples were recorded at room temperature using a spectroflurometer (Jobin Yvon Fluorolog 3) equipped with a 450 W Xenon lamp as an excitation source.

3. Results and discussion

Fig. 1 shows the powder X-ray diffraction patterns (PXRD) of Sr doped CaF$_2$ single crystals. The displayed peaks correspond to the $\langle h k l \rangle$ values $(111), (220), (311), (400), (331)$ and (422). The optical absorption spectra of pristine and γ-irradiated Sr doped CaF$_2$ crystals are shown in Fig. 2. The absorption spectra in the wavelength range 190–900 nm were measured using JASCO V-570 UV/Vis/NIR spectrophotometer at room temperature. The PL emission spectra of the samples were recorded at room temperature using a spectroflurometer (Jobin Yvon Fluorolog 3) equipped with a 450 W Xenon lamp as an excitation source.

Fig. 1. Powder X-ray diffraction pattern of Sr doped CaF$_2$ single crystals.

Fig. 2. Optical absorption of γ-rayed Sr doped CaF$_2$ single crystals.

Fig. 3. Variation of Optical absorption with γ-dose for Sr doped CaF$_2$ single crystals.
to a center associated with an electron trapped by a Ca$^{2+}$ interstitial as explained by Scouler and Smakula [17].

Literature reveals that an absorption band at 460 nm in irradiated CaF$_2$ is due to a hole connected with neutral fluorine atoms in interstitial positions (H centers) located in the center of the cube formed by the sublattice of eight fluorine ions [14]. Hence, the 463 nm band is attributed to traps of H-center. In Sr doped CaF$_2$ crystal the doped Sr$^{2+}$ ions ($R=1.4\,\text{Å}$) substitute some of the Ca$^{2+}$ ions ($R=1.26\,\text{Å}$) in the CaF$_2$ lattice. This results in the local elastic deformation in the CaF$_2$ lattice. It is reported that the absorption spectrum of pure CaF$_2$ crystals consists of a peak at 520 nm due to M-center [18]. M-center consists of a pair of adjacent F-centers. However, in Sr doped CaF$_2$ due to local deformation of the lattice the M-center gets perturbed. This results in a slight shift of M-center absorption peak [19,20]. Hence, the 524 nm peak in the present study is attributed to perturbed M-center.

High energy irradiation increases the concentration of traps for electrons and holes. The increase in the intensity of optical absorption peaks with γ-dose indicates the increase of color centers due to increase in traps. Higher γ-dose is found to produce more defects. The optical absorption studies were also carried out on undoped γ-irradiated CaF$_2$ crystals simultaneously under identical conditions and the results are presented elsewhere. From these studies it is observed that undoped γ-irradiated CaF$_2$ crystals produce a prominent and strong absorption peak corresponding to the F-center at $\sim 374\,\text{nm}$ along with three weak ones at $\sim 456, 523$ and $623\,\text{nm}$ corresponding to H, M and R-centers, respectively. The intensity of absorption peaks was found to increase with increase in γ-dose. However, there was no significant change in peak position and shape with increase in dose. When the absorption spectra of undoped and Sr doped CaF$_2$ crystals are compared it is found that optical absorption in Sr doped crystals is reduced marginally. This shows that Sr does not enhance the optical absorption of CaF$_2$ crystals with increase in dose. When the absorption spectra of undoped and Sr doped samples are compared it is found that optical absorption in Sr doped crystals is reduced marginally. This shows that Sr does not enhance the optical absorption of CaF$_2$ crystals with increase in dose.

Fig. 4 shows the photoluminescence spectrum of γ-irradiated Sr doped CaF$_2$ single crystals under 240 nm excitation. A strong PL emission is observed with a peak at $\sim 394\,\text{nm}$. However, when the samples were excited at 370 nm a prominent emission was observed at $\sim 530\,\text{nm}$ besides a shoulder at 465 nm (Fig. 5). The PL intensity of 394 and 530 nm peaks increased with increase in γ-dose as shown in Fig. 6. The PL studies of undoped CaF$_2$ were also carried out by the authors and results are discussed elsewhere. The PL results of undoped and Sr doped samples are compared. From the studies it is found that excitation of undoped CaF$_2$ samples at 240 nm showed PL emission at 390 nm whereas the Sr doped CaF$_2$ crystals have shown the PL emission at 394 nm for the same excitation as mentioned above. Thus there is small shift in the emission peak in Sr doped samples. Similar shift is observed in the emission wavelength corresponding to the 465 nm emission wavelength as explained below. Undoped CaF$_2$ crystals showed PL emission at $\sim 460\,\text{nm}$ whereas the Sr doped one showed similar PL emission at $\sim 465\,\text{nm}$. This shows that similar defects are created in undoped and Sr doped samples. The PL intensities of the emission peaks in Sr doped samples are less than that of undoped CaF$_2$. This indicates that Sr doping reduces the emission efficiency of CaF$_2$. In CaF$_2$, the aggregation of point defects produced by energetic radiation plays an important role in the emission and absorption of energy. It is well established that irradiation of CaF$_2$ leads to the formation of F and F-aggregate centers in it. When the sample containing F-center is excited with UV light, due to electronic transitions in the sample the energy absorbed by the defects gets released in the form of photons leading to PL emission. The emission at 394 nm in the present studies is attributed to F-center [22]. It is well known that the PL spectra greatly depend on the nature of the dopants, their location in the host lattice and charge compensating ions. The nature of the luminescence centers is a function of the host lattice, the dopant concentration and the thermal treatment of the samples. Because of the change in atomic radius the lattice of CaF$_2$ is slightly distorted. The 465 nm peak in the present study may be assigned to host lattice emission as it occurs in both undoped and Sr doped CaF$_2$ crystals [23]. The 530 nm emission in the present study is attributed to aggregate centers perturbed by the strontium ions in the lattice of CaF$_2$. The PL emission at 390 nm in pure CaF$_2$ crystals is assigned to F-center. This indicates that doping the CaF$_2$ crystal with Sr results in an emission band in the higher wavelength region. The intensity of
emission increases with γ-dose. Many investigators have reported that as irradiation increases, some kind of coagulation of colloidal particles takes place with bigger particles being produced at heavier irradiations. As a consequence, the emission intensity increases [24,25]. The broad feature of the emission peaks indicates the high defect concentration responsible for the PL emission.

4. Conclusion

Optical absorption studies of γ-rayed Sr doped CaF$_2$ crystals showed generation of F and F-aggregate centers. The PL spectra revealed the presence of radiation induced defects in the irradiated crystals. The doping of CaF$_2$ with 1 mol% Sr does not create new defects. However, the optical absorption and PL intensities are reduced in Sr doped CaF$_2$ crystals. Hence, Sr doping decreases the optical absorption and the emission efficiency of CaF$_2$ crystals.

References